Electronic Supplementary Information (CP-ART-05-2010-000433)

Influence of phosphate anion adsorption on the kinetics of oxygen reduction

on low index Pt(hkl) single crystals

Qinggang He^a, Xiaofang Yang^b, Wei Chen^{c,#}, Sanjeev Mukerjee^{a,*}, Bruce Koel^b, and Shaowei

Chen^{c,*}

^a Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave,

Boston, MA 02115 USA. Email: <u>s.mukerjee@neu.edu</u> (S. M.)

^b Department of Chemistry and Center for Advanced Materials and Nanotechnology, Lehigh

University, Bethlehem, PA 18015 USA

^c Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa

Cruz, CA 95064 USA. Email: <u>schen@chemistry.ucsc.edu</u> (S.W.C.)

Present address: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

In-situ X-ray absorption spectroscopy. In situ X-ray absorption spectroscopic data were collected on a Pt/C (30%, E-TEK) sample as a function of electrode potentials (+0.01 V, +0.24 V, +0.54 V, +0.84 V, and +1.04 V) in 0.1 M HClO₄ and 0.1 M HClO₄ + 100 mM phosphoric acid. All data were processed with standard procedures using the IFEFFIT suite (v.1.2.9) [1]. Briefly, the reference foils corresponding to each scan were calibrated to the standard Pt L₃ edge energy and then carefully aligned to a selected standard at +0.54 V. The energy shifts were then automatically applied to all the respective sample scans. Difference spectra were obtained to isolate the effect of adsorbate by using the following equation,

 $\Delta\mu(x,y) = \mu(y \text{ V}, 0.1 \text{ M HClO}_4 + x \text{ M H}_3\text{PO}_4) - \mu(+0.54 \text{ V}, 0.1 \text{ M HClO}_4) \quad (1)$

where μ is the X-ray absorption coefficient at the electrode potential of y V and at H₃PO₄ concentration of x M. In a series of previous studies using the XANES-based $\Delta \mu$ technique [2-4], Pt catalyst surfaces were found to be the 'cleanest' and relatively free of any adsorbates at around

+0.5 V in acid media; therefore the data at +0.54 V in 0.1 M HClO₄ were used as the reference to generate the difference spectra in the present study.

Figure S1. Pt L₃ edge $\Delta\mu$ spectra for Pt/C in (a) 0.1 M HClO₄ and (b) 0.1 M HClO₄ + 100 mM H₃PO₄ ($\Delta\mu = \mu(y \text{ V}, x \text{ M H}_3\text{PO}_4) - \mu(+0.54 \text{ V}, 0 \text{ M H}_3\text{PO}_4)$)

Figure S1 shows the $\Delta\mu$ curves for the Pt/C (E-TEK) catalyst samples in (a) 0.1 M HClO₄ and (b) 0.1 M HClO₄ + 100 mM H₃PO₄. The signatures correspond very well to H/Pt adsorbed in 3-fold sites [3], and the magnitude of the H/Pt signature decreased with increasing electrode potential. Note that the absorption spectrum at +0.54 V in 0.1 M HClO₄ was used as the reference spectrum in the calculation of $\Delta\mu$. In 0.1 M HClO₄ + 100 mM H₃PO₄, the $\Delta\mu$ curve at +0.54 V exhibits a small negative feature at ca. 0 eV followed by a small, broad positive feature of roughly the same magnitude at ca. 5 eV. Considering that oxygen did not bond to the Pt surface at such low potentials and that the magnitude of the positive feature was much smaller than for a strongly bonded 3-fold O/Pt, it is likely that this is due to the more weakly bonded $H_2PO_4^-$ /Pt with the

Figure S2. Theoretical simulations of $\Delta \mu$ signatures of $H_2 PO_4^-$ adsorption on Pt by FEFF 8.0

oxygen occupying the 3-fold hollow sites on the Pt surface. This is very similar to the line shape found previously for 3-fold Cl/Pt [5]. As the potential was increased to +0.84 V and +1.04 V, the line shape approaches the theoretical 3-fold mode depicted in Figure S2, along with a negative peak close to 0 eV.

Additional Electrochemical Data

Figure S3. RDE voltammograms for the Pt(100), Pt(110, Pt(111), and PtSn(111) electrode in O_2 saturated 0.1 M HClO₄ at varied rotation rates. The current density was calculated by normalizing the voltammetric current to the geometrical area of the electrode. DC ramp 20 mV/s.

Figure 4S. RDE voltammograms of ORR at (left) Pt(100) and (right) Pt(110) electrodes in oxygen-saturated 0.1 M HClO4 and 0.1M HClO₄ + 50mM H₃PO₄. Rotation rate 900 RPM. DC potential ramp 20 mV/s.

References

- [1] B. Ravel, M. Newville, J. Synchrotron Rad. 12 (2005) 537-541.

- [1] D. Raver, M. Newvine, J. Synchrotron Rad. 12 (2003) 537-541.
 [2] M. Teliska, V.S. Murthi, S. Mukerjee, D.E. Ramaker, J. Electrochem. Soc. 152 (2005) A2159-A2169
 [3] M. Teliska, W.E. O'Grady, D.E. Ramaker, J. Phys. Chem. B 108 (2004) 2333–2344.
 [4] M. Teliska, W.E. O'Grady, D.E. Ramaker, J. Phys. Chem. B. 109 (2005) 8076–8084.
 [5] T.M. Arruda, B. Shyam, J.M. Ziegelbauer, S. Mukerjee, D.E. Ramaker, J. Phys. Chem. 112 (2008) 18087-18097.