Electronic Supplementary Information (ESI) for:

Density Functional Approximations for Charge Transfer Excitations with Intermediate Spatial Overlap

Ruifang Li, Jingjing Zheng, and Donald G. Truhlar

Prepared on July 14, 2010

The ESI accompanies an article in PCCP.

Contents

Cartesia	n coordinates for AE6 as optimized by QCISD/MG3	S-2
Cartesia and	n coordinates for structures of protonated Schiff bases 11-Z- <i>cis</i> -retinal d 11- Z- <i>cis</i> -7,8-dihydroretinal (2) as optimized with various density	
fur	nctionals and the $6-31+G(d)//6-31++G(d,p)$ basis set	S-3
Details of	of the calculations on which Table 3 is based	S-11
1.	AE6 database	S-12
2.	ABDE4 database	S-13
Details of	of the calculations on which Table 4 is based	S-14
1.	With counterpoise correction	S-14
2.	Without counterpoise correction	S-17
3.	Mean errors average over with and without	S-20
Details of	of the calculations on which Table 5 is based	S-21
1.	Barrier heights	S-21
2.	Mean errors	S-24

Cartesian coordinates (Å) for AE6 database

These structures are from "The Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory," B. J. Lynch, Y. Zhao, and D. G. Truhlar, Journal of Physical Chemistry A **107**, 1384-1388 (2003).

$C_2H_2O_2$

6	0.000000	0.000000	0.000000
6	0.000000	0.000000	1.520712
8	1.027828	0.000000	-0.626472
1	-0.996668	0.000000	-0.467311
8	-1.027828	0.000000	2.147184
1	0.996668	0.000000	1.988024

C_3H_4

С	0.000000	0.000000	0.219507
С	0.000000	0.000000	1.423958
С	0.000000	0.000000	-1.243764
Н	0.000000	0.000000	2.486256
Н	0.000000	1.019009	-1.628154
Н	0.882487	-0.509504	-1.628154
Η	-0.882487	-0.509504	-1.628154

C_4H_8

С	0.000000	1.076294	0.142865
С	0.000000	-1.076294	0.142865
С	-1.076294	0.000000	-0.142865
С	1.076294	0.000000	-0.142865
Η	0.000000	1.979204	-0.465165
Η	0.000000	1.359222	1.195822
Η	0.000000	-1.979204	-0.465165
Η	0.000000	-1.359222	1.195822
Η	-1.979204	0.000000	0.465165
Η	-1.359222	0.000000	-1.195822
Η	1.979204	0.000000	0.465165
Η	1.359222	0.000000	-1.195822

S_2

16	0.000000	0.000000	0.000000
16	0.000000	0.000000	1.892594

SiH₄

14	0.000000	0.000000	0.000000
1	0.852576	0.852576	0.852576
1	-0.852576	-0.852576	0.852576
1	-0.852576	0.852576	-0.852576

0.852576 -0.852576 -0.852576 1

SiO

- 14 $0.000000 \quad 0.000000 \quad 0.000000$ 8
- 0.000000 0.000000 1.512667

Cartesian coordinates (Å) for structures of protonated Schiff bases

These structures are optimized in the present work.

Protonated 11- Z-cis-retinal (1)

CAM-B3LYP

3.471415	-1.316667	0.845529
4.977196	-1.631570	0.823000
5.549777	-1.672755	-0.584854
5.365955	-0.318011	-1.256359
4.008034	0.308466	-1.044289
3.155704	-0.125993	-0.081894
3.093289	-0.976072	2.298334
3.722840	1.435926	-2.002546
1.833646	0.460591	0.124211
1.494026	1.772022	0.100143
0.167260	2.301669	0.341187
-0.962299	1.524947	0.177085
0.150440	3.746238	0.753525
-2.274111	1.960735	0.467509
-3.505937	1.336056	0.356311
-3.859723	0.052540	-0.120364
-2.825308	-0.901162	-0.641722
-5.224292	-0.278082	-0.085865
-5.767349	-1.481280	-0.508254
-7.057161	-1.788683	-0.468276
-8.109615	-0.911011	0.023926
2.669177	-2.555802	0.403325
5.146272	-2.582210	1.342169
5.508897	-0.862645	1.399738
5.051842	-2.449578	-1.176412
6.612023	-1.936279	-0.559972
5.557436	-0.395035	-2.332870
6.118424	0.392250	-0.879150
2.014298	-0.847071	2.433808
3.586101	-0.056121	2.630049
3.410089	-1.785387	2.965084
2.659653	1.648008	-2.121507
4.136049	1.202026	-2.988635
4.214512	2.361103	-1.673557
	3.471415 4.977196 5.549777 5.365955 4.008034 3.155704 3.093289 3.722840 1.833646 1.494026 0.167260 -0.962299 0.150440 -2.274111 -3.505937 -3.859723 -2.825308 -5.224292 -5.767349 -7.057161 -8.109615 2.669177 5.146272 5.508897 5.051842 6.612023 5.557436 6.118424 2.014298 3.586101 3.410089 2.659653 4.136049 4.214512	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

1	1.057329	-0.248073	0.407793
1	2.279865	2.511999	-0.019214
1	-0.810780	0.526389	-0.205572
1	-0.842777	4.180612	0.852834
1	0.675830	3.865618	1.707980
1	0.702468	4.340737	0.017197
1	-2.351048	2.970000	0.860356
1	-4.346054	1.940047	0.688287
1	-2.114074	-1.156816	0.150089
1	-2.261647	-0.439311	-1.457453
1	-3.243273	-1.832930	-1.019246
1	-5.900939	0.473824	0.306717
1	-5.139212	-2.268856	-0.909563
1	-7.332302	-2.700837	-0.806053
1	-9.063448	-1.430786	-0.058393
1	-7.936675	-0.655153	1.073354
1	-8.154879	0.005966	-0.570968
1	1.589291	-2.370351	0.418251
1	2.861748	-3.392307	1.084164
1	2.934361	-2.872774	-0.609014

M06-2X

6	3.092927	-1.625565	0.263032
6	4.479935	-2.128295	0.693360
6	5.577325	-1.718391	-0.277712
6	5.661639	-0.197674	-0.348331
6	4.321974	0.499078	-0.422827
6	3.163067	-0.135694	-0.117211
6	2.136440	-1.827371	1.451093
6	4.421653	1.936235	-0.870000
6	1.854245	0.519995	-0.160419
6	1.545431	1.753612	0.303747
6	0.221377	2.354077	0.282450
6	-0.915939	1.581108	0.166055
6	0.222160	3.848513	0.438844
6	-2.226980	2.107666	0.078420
6	-3.464117	1.488347	-0.001107
6	-3.813640	0.114947	0.027193
6	-2.768362	-0.952119	0.184677
6	-5.178064	-0.189661	-0.088072
6	-5.710097	-1.474912	-0.090017
7	-6.999815	-1.750932	-0.207259
6	-8.047829	-0.748226	-0.347092
6	2.576406	-2.445421	-0.932653
1	4.439394	-3.219251	0.803322
1	4.711240	-1.717180	1.686560
1	5.373584	-2.124544	-1.275541

6.541157	-2.131354	0.036536
6.271157	0.112744	-1.205200
6.184363	0.191044	0.540376
1.094350	-1.607149	1.188605
2.415066	-1.187044	2.295266
2.176690	-2.870139	1.786218
3.483866	2.331706	-1.263857
5.184678	2.028562	-1.649163
4.744239	2.580119	-0.040878
1.045661	-0.086792	-0.570781
2.339628	2.371371	0.717890
-0.772419	0.510127	0.150106
-0.764511	4.296555	0.541905
0.806470	4.115635	1.326376
0.726891	4.307739	-0.419375
-2.294722	3.192345	0.055346
-4.306810	2.169347	-0.091646
-2.176858	-0.763977	1.086093
-2.088086	-0.939063	-0.673727
-3.181255	-1.956275	0.265337
-5.865381	0.645112	-0.189657
-5.074374	-2.349633	0.002728
-7.278900	-2.723468	-0.198523
-9.007314	-1.256213	-0.430244
-8.064261	-0.093783	0.529317
-7.880748	-0.150656	-1.248168
1.584547	-2.108533	-1.256706
2.488818	-3.502077	-0.653721
3.245242	-2.370254	-1.794551
	6.541157 6.271157 6.184363 1.094350 2.415066 2.176690 3.483866 5.184678 4.744239 1.045661 2.339628 -0.772419 -0.764511 0.806470 0.726891 -2.294722 -4.306810 -2.176858 -2.088086 -3.181255 -5.865381 -5.074374 -7.278900 -9.007314 -8.064261 -7.880748 1.584547 2.488818 3.245242	6.541157 -2.131354 6.271157 0.112744 6.184363 0.191044 1.094350 -1.607149 2.415066 -1.187044 2.176690 -2.870139 3.483866 2.331706 5.184678 2.028562 4.744239 2.580119 1.045661 -0.086792 2.339628 2.371371 -0.772419 0.510127 -0.764511 4.296555 0.806470 4.115635 0.726891 4.307739 -2.294722 3.192345 -4.306810 2.169347 -2.176858 -0.763977 -2.088086 -0.939063 -3.181255 -1.956275 -5.865381 0.645112 -5.074374 -2.349633 -7.278900 -2.723468 -9.007314 -1.256213 -8.064261 -0.093783 -7.880748 -0.150656 1.584547 -2.108533 2.488818 -3.502077 3.245242 -2.370254

M08-HX

6	4.857727	1.867236	-1.149631
6	3.625216	0.997502	-1.105984
6	3.473137	0.005152	-0.187356
6	4.579966	-0.396683	0.804550
6	5.903782	0.311809	0.467119
6	5.704821	1.780761	0.113381
1	5.457058	1.575782	-2.032648
1	6.592815	0.194751	1.319140
1	5.202347	2.310800	0.938957
6	4.127729	-0.033680	2.231091
1	3.986173	1.050198	2.352727
1	3.170833	-0.521369	2.477216
1	4.874193	-0.368422	2.967904
6	4.842642	-1.914350	0.748048
1	5.759544	-2.145088	1.311183
1	4.036460	-2.507490	1.205490

1	4.989325	-2.260426	-0.286469
6	2.647271	1.314559	-2.209720
1	2.044278	2.204703	-1.964109
1	3.205537	1.567187	-3.124287
1	1.964033	0.488854	-2.441999
6	2.239840	-0.775786	-0.091122
6	-1.437286	-0.455830	-0.244468
1	-1.415321	0.629597	-0.384409
6	-2.713232	-1.066713	-0.209630
1	-2.769418	-2.152383	-0.094664
6	-3.898048	-0.363110	-0.303206
1	-3.825150	0.720190	-0.435674
6	-5.180188	-0.977506	-0.364521
6	-6.380835	-0.265086	-0.315918
1	-7.291005	-0.790084	-0.602721
6	-5.274123	-2.470855	-0.551903
1	-6.310724	-2.787997	-0.710946
1	-4.670770	-2.809525	-1.405096
1	-4.906790	-2.991524	0.345930
6	-6.595531	1.055585	0.113346
1	-7.593240	1.478752	-0.038726
7	-5.763821	1.856647	0.747325
1	2.358320	-1.833028	0.169135
1	-4.857000	1.489864	1.022033
6	-6.099095	3.198313	1.204754
1	-6.019264	3.256138	2.297683
1	-5.421462	3.933843	0.753175
1	-7.126948	3.432452	0.907580
6	-0.081869	-2.583454	0.075354
1	-1.040769	-3.108456	0.114644
1	0.513017	-3.031048	-0.733414
1	0.444658	-2.787763	1.019282
1	6.671761	2.280632	-0.039989
1	4.538381	2.905364	-1.347044
6	-0.220031	-1.100207	-0.133170
6	0.975165	-0.294133	-0.225622
1	0.828680	0.776561	-0.391012
1	6.374843	-0.198733	-0.392492

Protonated 11- Z-cis-7,8-dihydro (2)

CAM-B3LYP

6	-3.481320	-1.471814	0.455010
6	-4.578942	-2.212926	-0.331042
6	-5.923899	-1.502931	-0.282768
6	-5.790026	-0.118715	-0.903032
6	-4.558004	0.631272	-0.447359

6	-3.514187	0.034236	0.154170
6	-2.134533	-2.101097	0.054728
6	-4.641884	2.108050	-0.743557
6	-2.316027	0.843132	0.626235
6	-1.296947	1.141111	-0.502434
6	-0.058756	1.833649	-0.011270
6	1.146851	1.204806	-0.125774
6	-0.272060	3.183592	0.604132
6	2.385729	1.757416	0.319596
6	3.671351	1.270491	0.308229
6	4.198538	0.026111	-0.145675
6	3.310113	-1.033567	-0.725024
6	5.578873	-0.144971	-0.018194
6	6.282020	-1.282217	-0.405655
7	7.588458	-1.438686	-0.288074
6	8.508892	-0.451589	0.264422
6	-3.684232	-1.695532	1.967539
1	-4.662208	-3.236247	0.054577
1	-4.266647	-2.298776	-1.381197
1	-6.269570	-1.413601	0.753696
1	-6.683650	-2.085300	-0.814835
1	-6.676871	0.487872	-0.679515
1	-5.762250	-0.200614	-2.000320
1	-1.292470	-1.689227	0.621695
1	-1.934254	-1.967276	-1.014159
1	-2.159399	-3.178541	0.252529
1	-3.738797	2.671208	-0.504805
1	-5.471549	2.560421	-0.186013
1	-4.861839	2.268552	-1.806516
1	-1.795166	0.306043	1.425134
1	-2.648714	1.785457	1.069956
1	-1.783584	1.779916	-1.250116
1	-1.030195	0.209925	-1.00//3//0
1	1.136537	0.227035	-0.58/831
1	0.632673	3.784228	0.698223
1	-0.997547	3.753359	0.014819
1	-0./03536	3.0/1292	1.6061/0
1	2.313518	2./52196	0./49/91
1	4.416339	1.9482/3	0./16182
1	2.810240	-0.656/52	-1.6224/3
1	2.533624	-1.309666	-0.00591/
1	5.659212 6.141056	-1.943839	-1.001800
1	0.141930	0.073004	0.413030
1 1	J. / / 1202 7 085055	-2.15209/	-0.043108
1 1	0 517012	-2.313208	0.000/03
1 1	9.31/942 8/7011/	-0.000093	0.226240
1	0.4/9114	0.409932	-0.525510

1	8.253843	-0.230881	1.304613
1	-2.913998	-1.191928	2.561351
1	-3.633639	-2.764347	2.205354
1	-4.653936	-1.318405	2.303213

M06-2X

6	-3.353277	-1.496434	0.402096
6	-4.464132	-2.242945	-0.357340
6	-5.829244	-1.589279	-0.189412
6	-5.784708	-0.180239	-0.768610
6	-4.556800	0.598214	-0.349212
6	-3.463647	0.015352	0.177395
6	-2.006967	-2.042412	-0.105842
6	-4.698287	2.082032	-0.585050
6	-2.270860	0.846882	0.615000
6	-1.345590	1.218109	-0.573936
6	-0.099392	1.901123	-0.101955
6	1.102356	1.262154	-0.223087
6	-0.299696	3.237119	0.554895
6	2.332138	1.806730	0.261643
6	3.616418	1.312875	0.286887
6	4.133001	0.054292	-0.144782
6	3.229161	-0.997482	-0.717557
6	5.508015	-0.137395	0.001978
6	6.190823	-1.297247	-0.370309
7	7.491749	-1.470960	-0.237348
6	8.411024	-0.482090	0.316001
6	-3.456835	-1.795489	1.910079
1	-4.482523	-3.287755	-0.022209
1	-4.213057	-2.256688	-1.428199
1	-6.101249	-1.545654	0.872169
1	-6.603089	-2.181055	-0.689305
1	-6.678553	0.385748	-0.475732
1	-5.810405	-0.225650	-1.868501
1	-1.150509	-1.606070	0.423349
1	-1.886391	-1.859012	-1.179926
1	-1.969375	-3.126492	0.052877
1	-3.802496	2.663811	-0.359493
1	-5.519370	2.484294	0.021236
1	-4.964483	2.270132	-1.633002
1	-1.675848	0.296117	1.352419
1	-2.602186	1.761655	1.117625
1	-1.897263	1.884938	-1.249423
1	-1.097456	0.315747	-1.139156
1	1.087769	0.295645	-0.710874
1	0.559297	3.904252	0.465460
1	-1.169057	3.741622	0.123118

1	-0.507881	3.098345	1.623786
1	2.246999	2.801334	0.694612
1	4.358822	1.986077	0.708363
1	2.774532	-0.632246	-1.644179
1	2.421774	-1.218440	-0.012820
1	3.736789	-1.933809	-0.943014
1	6.084219	0.677233	0.430791
1	5.668715	-2.142955	-0.806398
1	7.883845	-2.353238	-0.542958
1	9.417619	-0.896671	0.297066
1	8.388613	0.430888	-0.285535
1	8.138845	-0.250463	1.349509
1	-2.660888	-1.298416	2.475934
1	-3.366410	-2.873242	2.090580
1	-4.412584	-1.456489	2.319973

M08-HX

6	-3.510457	-1.500440	0.390401
6	-4.685615	-2.156291	-0.358404
6	-5.992120	-1.393286	-0.170682
6	-5.842292	0.003568	-0.763605
6	-4.554538	0.684848	-0.350208
6	-3.508070	0.017729	0.174698
6	-2.213148	-2.137388	-0.139934
6	-4.580167	2.177418	-0.577948
6	-2.255199	0.757307	0.615216
6	-1.304419	1.074925	-0.569331
6	-0.062746	1.768338	-0.095060
6	1.148263	1.140932	-0.199155
6	-0.275011	3.116508	0.538669
6	2.362102	1.711091	0.302256
6	3.661604	1.255207	0.327274
6	4.224709	0.034775	-0.160316
6	3.366315	-1.001115	-0.825704
6	5.600812	-0.128680	0.016155
6	6.326303	-1.250765	-0.399149
7	7.625207	-1.396880	-0.236939
6	8.496324	-0.414714	0.394647
6	-3.616265	-1.803744	1.898410
1	-4.781795	-3.203019	-0.025417
1	-4.448007	-2.188069	-1.437624
1	-6.241244	-1.318435	0.900367
1	-6.826116	-1.926344	-0.650191
1	-6.691776	0.643458	-0.471349
1	-5.878771	-0.047882	-1.867995
1	-1.317290	-1.775573	0.390775
1	-2.086019	-1.944386	-1.216727

1	-2.252887	-3.229039	-0.000398
1	-3.634084	2.688829	-0.360983
1	-5.360687	2.645959	0.042710
1	-4.844481	2.396153	-1.625223
1	-1.697733	0.158225	1.352738
1	-2.521600	1.692353	1.131809
1	-1.838181	1.727049	-1.282237
1	-1.053903	0.148036	-1.104270
1	1.149753	0.163317	-0.676100
1	0.550410	3.817345	0.365558
1	-1.194215	3.578118	0.152273
1	-0.404208	3.010407	1.628295
1	2.242455	2.695694	0.764042
1	4.380810	1.933314	0.791892
1	2.879680	-0.571918	-1.713104
1	2.575893	-1.333712	-0.137877
1	3.915938	-1.889662	-1.148948
1	6.142939	0.678583	0.510690
1	5.836472	-2.089286	-0.895672
1	8.051873	-2.251900	-0.574051
1	9.521028	-0.795458	0.385352
1	8.463828	0.534343	-0.157881
1	8.188850	-0.244728	1.435670
1	-2.780973	-1.363130	2.464256
1	-3.593260	-2.890905	2.072806
1	-4.547461	-1.406919	2.326003

Details of the calculations on which Table 3 is based

BO denotes Born-Oppenheimer energy without spin-orbit coupling.

1 $E_h = 1$ hartree ≈ 627.5095 kcal/mol

1. AE6 database

	E(BO) E(spin-orbit) E(BO)		E(BO)+E(spin-orbit)	
	E _h	kcal/mol	kcal/mol	
M06-2X				
SiH ₄	-291.8556012	0.00	-183142.162	
SiO	-364.7155865	0.00	-228862.495	
S_2	-796.3612514	0.00	-499724.251	
C ₃ H ₄	-116.6380982	0.00	-73191.515	
$C_2H_2O_2$	-227.8108396	0.00	-142953.466	
C ₄ H ₈	-157.1771300	0.00	-98630.142	
Н	-0.4981341	0.00	-312.584	
С	-37.8407451	-0.09	-23745.517	
0	-75.0618945	-0.23	-47102.282	
S	-398.0975649	-0.56	-249810.56	
Si	-289.3506556	-0.430	-181570.702	
M08-HX				
SiH ₄	-291.8696042	0.00	-183150.949	
SiO	-364.7013911	0.00	-228853.588	
S_2	-796.3571549	0.00	-499721.681	
C_3H_4	-116.6628351	0.00	-73207.037	
$C_2H_2O_2$	-227.8119000	0.00	-142954.131	
C_4H_8	-157.2245502	0.00	-98659.899	
Н	-0.5018647	0.00	-314.925	
С	-37.8448910	-0.09	-23748.119	
0	-75.0552786	-0.23	-47098.130	
S	-398.0936236	-0.56	-249808.091	
Si	-289.350047	-0.43	-181570.333	
CAM-B3LYP				
SiH_4	-291.8932564	0.00	-183165.791	
SiO	-364.7482972	0.00	-228883.022	
S_2	-796.4184826	0.00	-499760.164	
C_3H_4	-116.6237968	0.00	-73182.540	
$C_2H_2O_2$	-227.8145110	0.00	-142955.770	
C_4H_8	-157.1632526	0.00	-98621.434	
Н	-0.4988128	0.00	-313.010	
С	-37.8349933	-0.09	-23741.908	
0	-75.0679572	-0.23	-47106.086	
S	-398.1294913	-0.56	-249830.598	
Si	-289.3793922	-0.430	-181588.748	

SE is signed error.

UE is unsigned error (absolute error).

M denotes mean

PB denotes "per bond". To put the results of the AE6 database on a per bond basis, we divide the mean error per molecule by the average number of bonds in a molecule, which is 4.83.

kcal/mol	SiH ₄	SiO	S ₂	C ₃ H ₄	$C_2H_2O_2$	C ₄ H ₈
Experiment	322.40 ^a	192.08 <i>a</i>	101.67 <i>a</i>	704.79 ^b	633.35 ^b	1149.01 ^b
M06-2X	321.112	189.498	103.123	704.628	632.700	1147.403
SE	-1.288	-2.582	1.453	-0.162	-0.650	-1.607
UE	1.288	2.5818	1.453	0.162	0.650	1.607
MSEPB			-0.16	7		
MUEPB			0.26	7		
M08-HX	320.917	185.124	105.499	702.982	631.784	1148.025
SE	-1.483	-6.956	3.829	-1.808	-1.566	-0.985
UE	1.483	6.9561	3.829	1.808	1.566	0.985
MSEPB			-0.31	0		
MUEPB			0.574	4		
CAM-B3LYP	325.005	188.188	98.968	704.778	633.762	1149.725
SE	2.605	-3.892	-2.702	-0.012	0.412	0.715
UE	2.605	3.892	2.702	0.012	0.412	0.715
MSEPB	-0.10					
MUEPB			0.35	7		

a from the tabulation in "Optimized Parameters for Scaling Correlation Energy," P. L. Fast, J. Corchado,
M. L. Sanchez, and D. G. Truhlar, Journal of Physical Chemistry A 103, 3139-3143 (1999).

^b from the tabulation in "Small Representative Benchmarks for Thermochemical Calculations," B. J. Lynch and D. G. Truhlar, Journal of Physical Chemistry A **107**, 8996-8999 (2003); erratum: **108**, 1460 (2003).

Supplementary Material (ESI) for Physical Chemistry Chemical Physics # This journal is (c) The Owner Societies 2010

2. ABDE4 database

Unit: a.u.	C ₂ H ₆	C ₂ H ₆ O	C_4H_{10}	$C_4H_{10}O$	CH ₃	CH ₃ O	<i>i-</i> Pr
M06-2X	-79.8340046	-155.0062433	-158.4154472	-233.6257087	-39.8231203	-115.0372714	-118.4424147
M08-HX	-79.8017933	-155.0289020	-158.4715129	-233.6724047	-39.8395373	-115.0457509	-118.4822882
CAM- B3LYP	-79.8016994	-155.0093313	-158.4066137	-233.6209615	-39.8262034	-115.0465436	-118.4399270

	Experiment ^a	Calculated	SE	UE
	kcal/mol	kcal/mol	kcal/mol	kcal/mol
H ₃ C-CH ₃				
M06-2X	97.39	97.220	-0.170	0.170
M08-HX	97.39	97.611	0.221	0.221
CAM-B3LYP	97.39	93.683	-3.707	3.707
$H_3C-CH(CH_3)_2$				
M06-2X	95.00	93.930	-1.070	1.070
M08-HX	95.00	94.071	-0.929	0.929
CAM-B3LYP	95.00	88.155	-6.845	6.845
H ₃ CO-CH ₃				
M06-2X	89.79	90.119	0.329	0.329
M08-HX	89.79	91.523	1.733	1.733
CAM-B3LYP	89.79	85.708	-4.08	4.082
H ₃ CO-CH(CH ₃) ₂				
M06-2X	91.51	90.591	-0.919	0.919
M08-HX	91.51	91.631	0.121	0.121
CAM-B3LYP	91.51	84.394	-7.116	7.116
			MSE	MUE
M06-2X]		0.286	0.751
M08-HX]		-0.457	0.622
CAM-B3LYP			-5.438	5.438

a from the tabulation in "A New Local Density Functional for Main Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions," Y. Zhao and D. G. Truhlar, Journal of Chemical Physics **125**, 194101/1-18 (2006).

Details of the calculations on which Table 4 is based

CpC denotes counterpoise correction

•

1. With CpC (units: kcal/mol)

M06-2X/		Best	aala	Signed	Unsigned
def2-TZVP		estimate	calc.	error	error
HB7A	Hydrogen bonded				
	$(NH_3)_2 (C_{2h})$	-3.17	-3.49	-0.32	0.32
	$(H_2O)_2 (C_s)$	-5.02	-5.40	-0.38	0.38
	Formic acid dimer	-18.80	-18.77	0.03	0.03
	formamide dimer	-16.12	-15.51	0.61	0.61
	uracil dimer	-20.69	-19.29	1.40	1.40
	2-pyridoxine-2-amino-pyridine	-17.00	-15.44	1.56	1.56
	adenine_thymine (WC)	-16.74	-14.88	1.86	1.86
D8 A	Dispersion-dominated				
	$(CH_4)_2$	-0.53	-0.41	0.12	0.12
	$(C_2H_4)_2$	-1.50	-1.38	0.12	0.12
	benzene-CH ₄	-1.45	-1.30	0.15	0.15
	benzene dimer (stacked)	-2.62	-2.28	0.34	0.34
	pyrazine dimer	-4.20	-3.76	0.44	0.44
	indole-benzene (stacked)	-4.59	-4.14	0.45	0.45
	uracil dimer (C_2)	-9.74	-9.52	0.22	0.22
	adenine-thymine (stacked)	-11.66	-11.82	-0.16	0.16
M7A	Mixed				
	Ethylene–acetylene	-1.51	-1.31	0.19	0.19
	benzene-water	-3.29	-3.55	-0.26	0.26
	benzene-NH ₃	-2.32	-2.29	0.03	0.03
	benzene-HCN	-4.55	-4.80	-0.25	0.25
	benzene dimer (T-shaped)	-2.71	-2.16	0.55	0.55
	indole-benzene (T-shaped)	-5.62	-4.84	0.78	0.78
	phenol dimer	-7.09	-6.48	0.61	0.61

M08-HX/		Best	calc.	Signed	Unsigned
HR7A	Hydrogen bonded	estimate		CITOI	CITOI
nd/it	$(NH_3)_2$ (C _{2b})	-3 17	-3 70	-0.53	0.53
	$(H_2O)_2 (C_c)$	-5.02	-5 49	-0.47	0.03
	Formic acid dimer	-18.80	-18.27	0.53	0.53
	formamide dimer	-16.12	-15.68	0.44	0.44
	uracil dimer	-20.69	-19.52	1.17	1.17
	2-pyridoxine-2-amino-pyridine	-17.00	-15.59	1.41	1.41
	adenine thymine (WC)	-16.74	-15.03	1.71	1.71
D8A	Dispersion-dominated				
	(CH ₄) ₂	-0.53	-0.15	0.38	0.38
	$(C_2H_4)_2$	-1.50	-1.44	0.06	0.06
	benzene-CH ₄	-1.45	-1.46	-0.01	0.01
	benzene dimer (stacked)	-2.62	-2.01	0.61	0.61
	pyrazine dimer	-4.20	-3.35	0.85	0.85
	indole-benzene (stacked)	-4.59	-3.82	0.77	0.77
	uracil dimer (C ₂)	-9.74	-8.68	1.06	1.06
	adenine-thymine (stacked)	-11.66	-11.10	0.56	0.56
M7A	Mixed				
	Ethylene–acetylene	-1.51	-1.46	0.05	0.05
	benzene-water	-3.29	-3.49	-0.20	0.20
	benzene-NH ₃	-2.32	-2.35	-0.03	0.03
	benzene-HCN	-4.55	-5.04	-0.49	0.49
	benzene dimer (T-shaped)	-2.71	-2.06	0.65	0.65
	indole-benzene (T-shaped)	-5.62	-4.77	0.85	0.85
	phenol dimer	-7.09	-6.33	0.76	0.76

Supplementary Material (ESI) for Physical Chemistry Chemical Physics # This journal is (c) The Owner Societies 2010

CAM-B3LYP/		Best		Signed	Unsigned
def2-TZVP		estimate	calc.	error	error
HB7A	Hydrogen bonded				
	$(NH_3)_2 (C_{2h})$	-3.17	-3.10	0.07	0.07
	$(H_2O)_2 (C_s)$	-5.02	-5.60	-0.58	0.58
	Formic acid dimer	-18.80	-19.12	-0.32	0.32
	formamide dimer	-16.12	-15.43	0.69	0.69
	uracil dimer	-20.69	-19.41	1.28	1.28
	2-pyridoxine-2-amino-pyridine	-17.00	-15.12	1.88	1.88
	adenine_thymine (WC)	-16.74	-14.33	2.41	2.41
D8A	Dispersion-dominated				
	$(CH_{4})_{2}$	-0.53	0.06	0.59	0.59
	$(C_2H_4)_2$	-1.50	-0.21	1.29	1.29
	benzene-CH ₄	-1.45	0.06	1.51	1.51
	benzene dimer (stacked)	-2.62	2.31	4.93	4.93
	pyrazine dimer	-4.20	0.87	5.07	5.07
	indole-benzene (stacked)	-4.59	2.66	7.25	7.25
	uracil dimer (C_2)	-9.74	-3.41	6.33	6.33
	adenine-thymine (stacked)	-11.66	-2.07	9.59	9.59
M7A	Mixed				
	Ethylene–acetylene	-1.51	-0.98	0.53	0.53
	benzene-water	-3.29	-2.10	1.19	1.19
	benzene-NH ₃	-2.32	-0.89	1.43	1.43
	benzene-HCN	-4.55	-3.06	1.49	1.49
	benzene dimer (T-shaped)	-2.71	-0.02	2.69	2.69
	indole-benzene (T-shaped)	-5.62	-1.95	3.67	3.67

Details of the calculations on which Table 4 is based (continued)

2. Without CpC (units: kcal/mol)

M06-2X/		Best		Signed	Unsigned
def2-TZVP		estimate	calc.	error	error
HB7A	Hydrogen bonded				
	$(NH_3)_2 (C_{2h})$	-3.17	-3.79	-0.62	0.62
	$(H_2O)_2 (C_s)$	-5.02	-5.90	-0.88	0.88
	Formic acid dimer	-18.80	-19.30	-0.50	0.50
	formamide dimer	-16.12	-15.98	0.14	0.14
	uracil dimer	-20.69	-19.66	1.03	1.03
	2-pyridoxine-2-amino-pyridine	-17.00	-15.92	1.08	1.08
	adenine_thymine (WC)	-16.74	-15.34	1.40	1.40
D8A	Dispersion-dominated				
	$(CH_4)_2$	-0.53	-0.45	0.08	0.08
	$(C_2H_4)_2$	-1.50	-1.44	0.06	0.06
	benzene-CH ₄	-1.45	-1.37	0.08	0.08
	benzene dimer (stacked)	-2.62	-2.55	0.07	0.07
	pyrazine dimer	-4.20	-4.03	0.17	0.17
	indole-benzene (stacked)	-4.59	-4.59	0.00	0.00
	uracil dimer (C_2)	-9.74	-10.15	-0.41	0.41
	adenine-thymine (stacked)	-11.66	-12.64	-0.98	0.98
M7A	Mixed				
	Ethylene–acetylene	-1.51	-1.40	0.11	0.11
	benzene-water	-3.29	-4.19	-0.90	0.90
	benzene-NH ₃	-2.32	-2.59	-0.27	0.27
	benzene-HCN	-4.55	-4.90	-0.35	0.35
	benzene dimer (T-shaped)	-2.71	-2.31	0.40	0.40
	indole-benzene (T-shaped)	-5.62	-5.19	0.43	0.43
	phenol dimer	-7.09	-7.03	0.06	0.06

M08-HX/		Best		Signed	Unsigned
def2-TZVP		estimate calc.		error	error
HB7A	Hydrogen bonded				
	$(NH_3)_2 (C_{2h})$	-3.17	-4.06	-0.89	0.89
	$(H_2O)_2 (C_s)$	-5.02	-6.09	-1.07	1.07
	Formic acid dimer	-18.80	-18.97	-0.17	0.17
	formamide dimer	-16.12	-16.32	-0.20	0.20
	uracil dimer	-20.69	-20.09	0.60	0.60
	2-pyridoxine-2-amino-pyridine	-17.00	-16.28	0.72	0.72
	adenine_thymine (WC)	-16.74	-15.72	1.02	1.02
D8A	Dispersion-dominated				
	$(CH_4)_2$	-0.53	-0.18	0.35	0.35
	$(C_2H_4)_2$	-1.50	-1.56	-0.06	0.06
	benzene-CH ₄	-1.45	-1.54	-0.09	0.09
	benzene dimer (stacked)	-2.62	-2.40	0.22	0.22
	pyrazine dimer	-4.20	-3.72	0.48	0.48
	indole-benzene (stacked)	-4.59	-4.46	0.13	0.13
	uracil dimer (C ₂)	-9.74	-9.55	0.19	0.19
	adenine-thymine (stacked)	-11.66	-12.18	-0.52	0.52
M7A	Mixed				
	Ethylene–acetylene	-1.51	-1.60	-0.09	0.09
	benzene-water	-3.29	-4.24	-0.95	0.95
	benzene-NH ₃		-2.73	-0.41	0.41
	benzene-HCN		-5.18	-0.63	0.63
	benzene dimer (T-shaped)	-2.71	-2.31	0.40	0.40
	indole-benzene (T-shaped)	-5.62	-5.27	0.35	0.35
	phenol dimer	-7.09	-7.02	0.07	0.07

CAM-B3LYP/		Best	Best		Unsigned
def2-TZVP		estimate	calc.	error	error
HB7A	Hydrogen bonded				
	$(NH_3)_2 (C_{2h})$	-3.17	-3.50	-0.33	0.33
	$(H_2O)_2 (C_s)$	-5.02	-6.22	-1.20	1.20
	Formic acid dimer	-18.80	-19.83	-1.03	1.03
	formamide dimer	-16.12	-16.07	0.05	0.05
	uracil dimer	-20.69	-19.89	0.80	0.80
	2-pyridoxine-2-amino-				
	pyridine	-17.00	-15.73	1.27	1.27
	adenine_thymine (WC)	-16.74	-14.92	1.82	1.82
D8A	Dispersion-dominated				
	$(CH_{4})_{2}$	-0.53	0.01	0.54	0.54
	$(C_2H_4)_2$	-1.50	-0.29	1.21	1.21
	benzene-CH ₄	-1.45	-0.03	1.42	1.42
	benzene dimer (stacked)	-2.62	1.97	4.59	4.59
	pyrazine dimer	-4.20	0.54	4.74	4.74
	indole-benzene (stacked)	-4.59	2.11	6.70	6.70
	uracil dimer (C_2)	-9.74	-4.14	5.60	5.60
	adenine-thymine (stacked)	-11.66	-3.01	8.65	8.65
M7A	Mixed				
	Ethylene–acetylene	-1.51	-1.09	0.42	0.42
	benzene-water	-3.29	-2.94	0.35	0.35
	benzene-NH ₃	-2.32	-1.27	1.05	1.05
	benzene-HCN	-4.55	-3.19	1.36	1.36
	benzene dimer (T-shaped)	-2.71	-0.23	2.48	2.48
	indole-benzene (T-shaped)	-5.62	-2.40	3.22	3.22
	phenol dimer				

Details of the calculations on which Table 4 is based (continued)

3. Mean signed errors and mean unsigned errors (kcal/mol) in noncovalent interaction database (S22A) with def2-TZVP basis set

Method	HB	HB7A		D8A		Mixed7A				
	MSE	MUE	MSE	MUE	MSE	MUE	MSE	MUE		
Not Counterpoise Corrected										
M06-2X	0.24	0.81	-0.12	0.23	-0.08	0.36	0.01	0.46		
M08-HX	0.00	0.67	0.09	0.25	-0.18	0.42	-0.03	0.44		
CAM-B3LYP	0.20	0.93	4.18	4.18	1.54	1.54	2.07	2.30		
Counterpoise Co	orrected									
M06-2X	0.68	0.88	0.21	0.25	0.24	0.38	0.37	0.49		
M08-HX	0.61	0.90	0.54	0.54	0.23	0.43	0.46	0.62		
CAM-B3LYP	0.78	1.03	4.57	4.57	1.94	1.94	2.52	2.61		

M06-2X/MG38					
		Best Est.	Calc.	SE	UE
Heavy atom transfer					
$H \cdot + N_2 O \rightarrow OH \cdot + N_2$	forward	17.13	17.60	0.47	0.47
	reverse	82.47	82.26	-0.21	0.21
$H \cdot + ClH \rightarrow HCl + H \cdot$	forward	18.00	18.55	0.55	0.55
	reverse	18.00	18.55	0.55	0.55
$CH_3 + FCl \rightarrow CH_3F + Cl$	forward	6.75	4.71	-2.04	2.04
	reverse	60.00	60.55	0.55	0.55
S _N 2					
$Cl-\cdots CH_3Cl \rightarrow ClCH_3\cdots Cl-$	forward	13.41	13.54	0.13	0.13
	reverse	13.41	13.54	0.13	0.13
$F-\cdots CH_3Cl \rightarrow FCH_3\cdots Cl-$	forward	3.44	3.24	-0.20	0.20
	reverse	29.42	33.54	4.12	4.12
$OH-+CH_3F \rightarrow HOCH_3+F-$	forward	-2.44	-2.87	-0.43	0.43
	reverse	17.66	17.53	-0.13	0.13
Unimolecular and association					
reactions					
$H \cdot + N_2 \rightarrow H N_2 \cdot$	forward	14.36	14.11	-0.25	0.25
	reverse	10.61	11.34	0.73	0.73
$H \cdot + C_2 H_4 \rightarrow C H_3 C H_2 \cdot$	forward	1.72	2.94	1.22	1.22
	reverse	41.75	43.65	1.90	1.90
$HCN \rightarrow HNC$	forward	48.07	46.17	-1.90	1.90
	reverse	32.82	33.34	0.52	0.52
Hydrogen atom transfer reactions					
$OH + CH_4 \rightarrow CH_3 + H_2O$	forward	6.70	5.63	-1.07	1.07

reverse

forward

reverse

forward

reverse

19.60

10.70

13.10

3.60

17.30

17.48

9.80

12.02

4.43

18.71

-2.12

-0.90

-1.08

0.83

1.41

2.12

0.90

1.08

0.83

1.41

Details of the calculations on which Table 5 is based

 $\rm H + OH \rightarrow O + H_2$

 $\mathrm{H} + \mathrm{H}_2 \mathrm{S} \ \rightarrow \mathrm{H}_2 + \mathrm{H} \mathrm{S}$

M08-HX/MG3S					
		Best Est.	Calc.	SE	UE
Heavy atom transfer					
$H \cdot + N_2 O \rightarrow OH \cdot + N_2$	forward	17.13	17.88	0.75	0.75
	reverse	82.47	82.53	0.06	0.06
$H \cdot + ClH \rightarrow HCl + H \cdot$	forward	18.00	19.39	1.39	1.39
	reverse	18.00	19.39	1.39	1.39
$CH_3 + FCl \rightarrow CH_3F + Cl$	forward	6.75	5.54	-1.21	1.21
	reverse	60.00	58.02	-1.98	1.98
S _N 2					
$Cl-\cdots CH_3Cl \rightarrow ClCH_3\cdots Cl-$	forward	13.41	15.24	1.83	1.83
	reverse	13.41	15.24	1.83	1.83
$F-\cdots CH_3Cl \rightarrow FCH_3\cdots Cl-$	forward	3.44	4.55	1.11	1.11
	reverse	29.42	30.37	0.95	0.95
$OH-+CH_3F \rightarrow HOCH_3+F-$	forward	-2.44	-4.33	-1.89	1.89
	reverse	17.66	18.27	0.61	0.61
Unimolecular and association					
reactions					
$H \cdot + N_2 \rightarrow H N_2 \cdot$	forward	14.36	14.03	-0.33	0.33
	reverse	10.61	11.80	1.19	1.19
$\mathrm{H}\cdot + \mathrm{C}_{2}\mathrm{H}_{4} \rightarrow \mathrm{C}\mathrm{H}_{3}\mathrm{C}\mathrm{H}_{2}\cdot$	forward	1.72	2.25	0.53	0.53
	reverse	41.75	44.07	2.32	2.32
$HCN \rightarrow HNC$	forward	48.07	46.70	-1.37	1.37
	reverse	32.82	34.85	2.03	2.03
Hydrogen atom transfer reactions					
$OH + CH_4 \rightarrow CH_3 + H_2O$	forward	6.70	6.41	-0.29	0.29
	reverse	19.60	19.17	-0.43	0.43
$H + OH \rightarrow O + H_2$	forward	10.70	10.00	-0.70	0.70
	reverse	13.10	11.37	-1.73	1.73
$H + H_2S \rightarrow H_2 + HS$	forward	3.60	4.15	0.55	0.55
	reverse	17.30	16.96	-0.34	0.34

CAM-B3IYP/MG3S					
		Best	Calc.	SE	UE
		Est.			
Heavy atom transfer					
$H \cdot + N_2 O \rightarrow OH \cdot + N_2$	forward	17.13	13.19	-3.94	3.94
	reverse	82.47	77.23	-5.24	5.24
$H \cdot + ClH \rightarrow HCl + H \cdot$	forward	18.00	15.05	-2.95	2.95
	reverse	18.00	15.05	-2.95	2.95
$CH_3 + FCl \rightarrow CH_3F + Cl$	forward	6.75	2.63	-4.12	4.12
	reverse	60.00	57.96	-2.04	2.04
S _N 2					
$Cl-\cdots CH_3Cl \rightarrow ClCH_3\cdots Cl-$	forward	13.41	12.57	-0.84	0.84
	reverse	13.41	12.57	-0.84	0.84
$F-\cdots CH_3Cl \rightarrow FCH_3\cdots Cl-$	forward	3.44	2.04	-1.40	1.40
	reverse	29.42	29.27	-0.15	0.15
$OH-+CH_3F \rightarrow HOCH_3+F-$	forward	-2.44	-4.43	-1.99	1.99
	reverse	17.66	16.74	-0.92	0.92
Unimolecular and association					
reactions					
$H \cdot + N_2 \rightarrow H N_2 \cdot$	forward	14.36	9.25	-5.11	5.11
	reverse	10.61	11.95	1.34	1.34
$H \cdot + C_2 H_4 \rightarrow C H_3 C H_2 \cdot$	forward	1.72	0.28	-1.44	1.44
	reverse	41.75	43.56	1.81	1.81
$HCN \rightarrow HNC$	forward	48.07	47.39	-0.68	0.68
	reverse	32.82	34.27	1.45	1.45
Hydrogen atom transfer reactions					
$OH + CH_4 \rightarrow CH_3 + H_2O$	forward	6.70	3.53	-3.17	3.17
	reverse	19.60	15.26	-4.34	4.34
$H + OH \rightarrow O + H_2$	forward	10.70	5.79	-4.91	4.91
	reverse	13.10	6.85	-6.25	6.25
$H + H_2S \rightarrow H_2 + HS$	forward	3.60	0.73	-2.87	2.87
	reverse	17.30	16.46	-0.84	0.84

Method ^a	HATBH6		NSBH6		UABH6		HTBH6		DBH24/08
	MSE	MUE	MSE	MUE	MSE	MUE	MSE	MUE	MUE
M06-2X	-0.02	0.73	0.60	0.86	0.37	1.09	-0.49	1.24	0.98
M08-HX	0.07	1.13	0.74	1.37	0.73	1.30	-0.49	0.67	1.12
CAM-B3LYP	-3.54	3.54	-1.02	1.02	-0.44	1.97	-3.73	3.73	2.57

Mean signed errors and mean unsigned errors (kcal/mol) in barrier heights of DBH24/08 database as calculated with the MG3S basis set