Supplementary Information for

Preparation of highly ordered aluminum-planted mesoporous silica catalyst active for Biginelli reaction and formyl C-H insertion reaction with diazoester

Hiroaki Murata, Haruro Ishitani and Masakazu Iwamoto*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-5 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan iwamoto@res.titech.ac.jp

Table of Contents

1. ExperimentalFigs. S1, S22. ¹H- and ¹³C-NMR spectra of productsFigs. S1, S23. N2 absorption isotherms of Al-MCM-41sFigs. S3, S44. X-ray diffractions of Al-MCM-41sFigs. S5, S65. Typical ²⁷Al NMR spectra of Al-planted MCM-41sFig. S76. Correlation between catalytic activity and physicochemical properties of Al-plantedFigs. S8-127. Summary of physicochemical properties and catalytic activities of individual Al-planted MCM-41sTable S1

8. References

5

1

Fig. or Table

1. Experimental

General.

Unless specified, all starting materials and solvents were of purchased commercial reagents. Urea (4a) was s recrystallized from MeOH, and the other reagents and solvents were purified by respective literature procedures. Ethyl diazoacetate (2a) was prepared by the reported manner.^{S1} GC analyses were performed on an HP 6890 gaschromatograph equipped with an HP-5MS column (30 m \times 0.25 mm \times 0.25 µm) and an HP 5793 mass selective EI detector. High resolution mass spectra (HRMS) data were obtained on a JEOL JMS-700 spectrometer. The amounts of carbon and hydrogen were analyzed in a usual manner with a CHNS-932 system

- ¹⁰ of LECO Corporation. Melting point was measured by using a DTG-60 apparatus (Shimadzu). NMR spectra were measured on an AVANCE-400 (Bruker) spectrometer. Chemical shifts of the organic compounds were quoted in ppm from interenal TMS. ²⁷Al MAS NMR spectra of Al-planted MCM-41s were recorded at a frequency 104.2 MHz, a spining rate of 12 kHz, a pulse length of 4.0 μs, a delay time of 1.0 s and 12000 scans. Al-M41s were hydrated in an air chamber saturated with water vapour at room temperature before measurament.
- ¹⁵ γ-Al₂O₃ was used as a reference of chemical shifts (3.94 ppm). Powder X-ray diffraction (XRD) patterns of catalysts were recorded on a RINT2000 diffractometer with Cu K_α radiation (40 kV, 40 mA). N₂ sorption isotherms were obtained on a BELSORP 28SA volumetric adsorption analyzer at 77 K. An OPTIMA 3200XL ICP was used to determine the contents of metal ions in MCM-41s.

20 Preparations of catalysts.

All M41s were prepared by using $C_{12}H_{25}NMe_3Br$ and colloidal silica (Snow Techs 20, Nissan chemical Industries, Ltd.) as the template and the silica source. Al-M41-a, ^{S2} -b, ^{S3} and -c^{S4} were prepared by post synthesis methods in which the parent M41 was separately prepared^{S5} and the Al sources employed were described in the respective literatures. Al-M41-d, ^{S6} -e, ^{S7} and -f⁸⁸ were prepared by sol-gel methods. In ²⁵ preparation of Al-M41-[z], Al was planted onto the parent M41^{S5} by the template-ion exchange (TIE) method^{S9} with Al(NO₃)₃. All of the resulting materials were calcined at 873 K for 6 h in air. The catalysts were characterized by XRD, ICP, and N₂ absorption measurements as described above and applied for the catalytic reaction after being evacuated at 373 K for 1 h.

30 Typical procedure of Biginelli reaction.

3-Oxo-hexanoic acid ethyl ester (**3b**, 1.0 mmol), *p*-tolualdehyde (**1b**, 1.0 mmol), urea (**4a**, 0.50 mmol), tetradecane (GC internal standard, 0.20 mmol), and octane (solvent, 1 mL) were added into a 40 mL test tube which contained in advance a selected amount of catalyst and a magnetic stirrer bar. The mixture was heated at 388 K under Ar atmosphere for 10 h. The reaction mixture was diluted with MeOH, and the catalyst was ³⁵ removed by filtration and washed with AcOEt. The filtrate was evaporated and analyzed by GC.

5-Pyrimidinecarboxylic acid, 1,2,3,4-tetrahydro-4-(4-methylphenyl)-2-oxo-6-propyl-, ethyl ester (5a)^{S10} White crystal. ¹HNMR (400 MHz, d_6 -DMSO/TMS): $\delta_{\rm H}$ 9.14 (br, 1H), 7.68 (br, 1H), 7.11 (d, J = 1.5, 4H), 5.12 (d, J = 3.3, 1H), 3.97 (q, J = 7.0, 2H), 2.63 (t, J = 7.3, 2H), 2.24 (s, 3H), 1.49-1.62 (m, 2H), 1.09 (t, J = 7.0, 3H), 40 0.90 (t, J = 7.1, 3H). ¹³CNMR (100 MHz, d_6 -DMSO/TMS): $\delta_{\rm C}$ 165.56, 152.86, 152.64, 142.47, 136.83, 129.36, 126.59, 99.66, 59.66, 54.08, 32.78, 22.10, 21.10, 14.50, 14.15. HRMS(FAB) Calcd for [C₁₇H₂₃N₂O₃⁺] 303.1709, Found 303.1701. Mp 140-144 °C

Procedude of formyl C-H insertion reaction (Fig. 3).

Ethyl diazoacetate (2a, 12 mmol) was added at a stroke at 298 K to the mixture of heptanal (1a, 8.0 mmol), tetradecane (GC internal standard, 1.6 mmol) and Al-M41 (20 mg) in 40 ml of CH₂Cl₂. Progress in the reaction was traced with the periodical GC analysis.

3-Oxo-nonanoic acid ethyl ester (3a)^{S11} Colarless oil. ¹HNMR (400 MHz, CDCl₃/TMS): $\delta_{\rm H}$ 4.20 (q, *J* = 7.2, ⁵⁰ 2H), 3.43 (s, 2H), 2.54 (t, *J* = 7.4, 2H), 1.55-1.63 (m, 2H), 1.26-1.31 (m, 9H), 0.90 (t, *J* = 7.2, 3H). ¹³CNMR (100 MHz, CDCl₃/TMS): $\delta_{\rm C}$ 203.08, 167.33, 61.43, 49.33, 43.07, 31.57, 28.70, 23.42, 22.49, 14.26, 14.04. Anal. Calcd for C₁₁H₂₀O₃: C, 65.97; H, 10.07. Found: C, 65.52; H, 9.93.

2. ¹H and ¹³C NMR spectra of 5a and 3a

200 180 160 140 120 100 80 60 40 20 0 ppm Fig. S1 ¹H and ¹³C NMR spectra of 5-pyrimidinecarboxylic acid, 1,2,3,4-tetrahydro -4-(4-methylphenyl)-2-oxo-6- $_{5}$ propyl-, ethyl ester (**5a**). ^{S10}

Fig. S2 1 H and 13 C NMR spectra of 3-oxo-nonanoic acid ethyl ester (3a).^{S11}

3. N₂ absorption isotherms of Al-MCM-41s

Fig. S3 N2 adsorption-desorption isotherms of Al-MCM-41s (Table 1).

4. X-ray diffractions of Al-MCM-41s

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010

5. Typical ²⁷Al NMR spectra of Al-planted MCM-41s

Fig. S7a Typical ²⁷Al NMR spectra of Al-MCM-41s.

Fig. S7b Typical ²⁷Al NMR spectra of Al-MCM-41s.

6. Correlation between catalytic activity and physicochemical properties of Al-planted MCM-41s with Si/Al=23-38

Fig. S8 Correlation between yields of 5a and mesopore volume of Al-M41s with 23-38 of Si/Al.

Fig. S9 Correlations between yields of 5a and peak intensity of XRD (100) of Al-M41s with 23-38 of Si/Al.

Fig. S10 Correlations between yields of 5a and BET surface areas of Al-M41s with 23-38 of Si/Al.

Fig. S11 Correlations between yields of 5a and internal surface areas of Al-M41s with 23-38 of Si/Al aCalculated from the s difference between S_{BET} and extent surface area determined by t-plot method.

Fig. S12 Correlations between yields of 5a and value of $AIO_4/(AIO_4+AIO_6)$ of Al-M41s. ^{*a*}Calculated from the ²⁷Al NMR spectra using the respective peak areas.

7. Summary of physicochemical physicochemical properties and catalytic activities of individual Al-planted MCM-41s

Entry	Al-M41 ^a	pH ^b	[Al] /mmol g ⁻¹	Si /Al	$S_{BET} / m^2 g^{-1}$	$V_p / mm^3 g^{-1}$	$\frac{S_{int}}{m^2}$	D / nm^d	$\operatorname{Int}_{100}^{e}$ /10 ³ cps	GC yield /% ^f	AlO ₄ / (AlO ₄ + AlO ₆) ^g
1	Al(30)-M41-[0.36]	6.9	0.38	30	731	340	486	2.32	15	29	0.55
2	M41-[0.72]	_h	0.065	237	1010	616	925	2.12	29	53	0.57
3	Al(70)-M41-[0.72]	7.6	0.19	73	1002	545	823	2.12	29	59	0.72
4	Al(45)-M41-[0.72]	8.3	0.24	45	919	430	680	2.18	_ ^h	73	- ^h
5	Al(40)-M41-[0.72]	6.3	0.44	44	904	445	696	2.12	_h	74	0.75
6	Al(35)-M41-[0.72]	7.7	0.38	35	869	406	598	2.12	24	75	0.61
7	Al(35)-M41-[0.72]	8.1	0.40	33	809	385	648	2.12	_h	72	- ^h
8	Al(30)-M41-[0.72]	7.3	0.44	30	791	379	561	2.02	22	66	0.60
9	Al(20)-M41-[0.72]	5.8	0.58	23	800	230	328	2.12	20	62	0.62
10	Al(5)-M41-[0.72]	3.2	0.32	38	1009	601	935	2.18	25	75	0.55
11	M41-[1.44]	_ ^h	0.069	200	978	592	893	2.32	34	49	0.58
12	Al(100)-M41-[1.44]	9.5	0.16	80	852	544	802	2.24	35	63	- ^h
13	Al(50)-M41-[1.44]	8.8	0.36	47	949	447	761	2.16	29	58	_ ^h
14	Al(50)-M41-[1.44]	7.6	0.44	55	875	499	655	2.08	28	57	0.53
15	Al(40)-M41-[1.44]	8.8	0.42	35	900	433	604	2.24	30	73	_ ^h
16	Al(30)-M41-[1.44]	7.6	0.42	28	888	390	587	2.16	30	61	0.64
17	Al(30)-M41-[1.44]	6.8	0.48	29	776	359	527	2.08	26	58	_ ^h
18	Al(15)-M41-[1.44]	3.7	0.39	30	900	666	838	2.32	28	91	0.60
19	Al(15)-M41-[1.44]	3.3	0.48	30	838	610	755	2.30	22	84	- ^h
20	Al(15)-M41-[1.44]	3.2	0.44	28	939	641	806	2.16	27	88	0.64
21	Al(5)-M41-[1.44]	3.2	0.38	32	1043	619	977	2.16	29	89	0.65
22	Al(5)-M41-[1.44]	2.9	0.54	23	1038	600	956	2.30	29	85	_ <i>h</i>
23	Al(5)-M41-[1.44]	2.8	0.51	24	1090	631	992	2.16	34	87	0.63
24	Al(30)-M41-[1.44]-pH	3.1	0.24	52	978	659	949	2.32	29	72	0.50
25	Al(30)-M41-[1.44]-pH	3.0	0.27	60	859	596	820	2.18	39	62	0.41
26	Al(30)-M41-[1.44]-pH	2.9	0.32	49	896	637	868	2.20	30	56	0.49
27	Al(30)-M41-[1.44]-pH	2.8	0.19	65	862	500	817	1.96	26	73	0.85

Table S1. Physicochemical properties and catalytic activities of individual Al-planted MCM-41s

^{*a*}Numbers in the parentheses indicate initial Si/Al atomic ratios and those in the square brackets initial ${}^{5}C_{12}H_{25}NMe_{3}Br/SiO_{2}$ molar ratios. ^{*b*}PH Values of TIE solution. ^{*c*}Calculated from the difference between S_{BET} and external surface area determined the by t-plot method. ^{*d*}Estimitated from the N₂ desorption branch with Barrett-Joyner-Halenda (BJH) method. The values estimated from the adsorption isotherms were almost the same as those listed in the table within the errors of 0.1 nm. ^{*e*}Relative intensities of X-ray (100) diffraction. ^{*f*}Reaction conditions: Al-M41 50 mg, **3b** 1.0 mmol, **1b** 1.0 mmol, **4a** 0.50 mmol, octane 1.0 mL, 388 K, 10 h. ^{*s*}Calculated from the ²⁷Al NMR spectra and ¹⁰ the peak area ratios of AlO₄ to (AlO₄+AlO₆). ^{*h*}Not determined.

8. References

- S1 W. R. Moser, J. Am. Chem. Soc. 1969, 91, 1135.
- S2 R. Mokaya, W. Jones, Chem. Commun. 1997, 2185.
- S3 A. Ortlar, M. Wark, G. Schulz, E. Kloff, J. Rathouský, A. Zukal Stud. Surf. Sci. Catal. 1998, 117, 357.
- S4 Y. Oumi, H. Takagi, S. Sumiya, R. Mizuno, T. Uozumi, T. Sano, Micro. Mesopore. Mater. 2001, 44-45, 267.
- S5 T. Abe, Y. Tachibana, T. Uematsu, M. Iwamoto, J. Chem. Soc., Chem. Commun. 1995, 1617.
- S6 C. Blanco, C. Pesquera, F. González Stud. Surf. Sci. Catal. 2004, 154, 432.
 S7 C. Perego, S. Amarilli, A. Carati, C. Flego, G. Pazzuconi, C. Rizzo, G. Bellussi Micro. Mesopore. Mater. 1999, **27**, 345.
- 10 S8 S. Biz, M. G. White Micro. Mesopore. Mater. 2000, 40, 159.
- S9 M. Iwamoto, Y. Tanaka, Catal. Surv. Jpn. 2001, 5, 25.
- S10 H. Murata, H. Ishitani, M. Iwamoto Org. Biomolar. Chem. 2010, 8, 1202.
- S11 B. S. Balaji, B. M. Chanda Tetrahedron 1998, 54, 13237.