Supplementary information

ARTICLE TYPE

Table 1. Sum up of all vibrational modes

Nr	Vibrational mode	IR	SFG	Ref.
		(cm ⁻¹)	(cm^{-1})	
1	$v_s(C-O-C)$	1129	1121	24
2	$v_{s}(PhO)$	1263	1260	25
2	v(C-N)	1280	1279	25
3	$v_{s}(N-O)$	1341	1341	26
4	$v_a(N-O)$	1517	1521	26
5	skl(C=C)	1590	1592	25
6	$v_{s}(CH)$	2856	2857	
7	$v_{s}(CH)$	-	2879	
8	$v_{as}(CH)$	-	2887	
9	FR	-	2914	
10	FR	2926	2927	
11	$v_{as}(CH)$	2957	2966	
12	aromatic CH	-	3020	37, 39
13	aromatic CH	-	3060	37-39
14	OH ice-like	-	3250	52, 53
15	OH liquid-like	-	3382	52, 53
16	non donor OH against	-	3560	16
	hydrocarbon phase			
17	free OH	-	3700	41, 42

Table 2. Fitting Parameters for NB15C5 4.92mM in SSP polarization ⁵ conditions:

Fitted peak wavenumbers	Amplitude (a.u)	Γ_{v} (cm ⁻¹)
(cm^{-1})		()
2857	1.06 ± 0.001	8 ± 0.0001
2879	1.02 ± 0.0008	$9.5 \pm 6e-005$
2887	-2.1 ± 0.0005	$12.1 \pm 3e-005$
2914	10.3 ± 0.0002	38.724 ± 3.87
2927	-3.3 ± 0.00047	8 ± 0.0002
2966	-6.0 ± 0.0001	25.6 ± 4.66
3250	14.57 ± 2.1	97.406 ± 6.11
3382	30.614 ± 3.32	124.12 ± 5.01
3700	-19.28 ± 0.7	69.449 ± 2.36

¹⁰ Figure 1. SSP polarization spectra of 5mM NB15C5 showing the diagram of the intermolecular coupling model proposed by Zhelyaskov.

VSFS spectral fit using Zhelyaskov model.

Zhelyaskov³³ proposed a model arguing that the appearance of several features in the CH region of crown ethers might be ¹⁵ explained by the splitting of an unperturbed CH stretching v_u.

This is the vibration of a single CH oscillator without any interference of adjacent oscillators. The first effect responsible for splitting this molecular vibration is due to coupling of the two CH oscillators from the CH₂ unit resulting $_{20}$ in a splitting of the unperturbed vibration v_u into v_s – symmetric and v_a – asymmetric. The second interaction is a coupling between every adjacent CH₂ resulting in a further splitting of v_s – symmetric into v_{ss} – symmetric in – phase and v_{sa} – symmetric out – of – phase and splitting of v_a – $_{25}$ asymmetric into ν_{as} – asymmetric $\,$ in – phase and ν_{aa} – asymmetric out - of - phase The last interaction is a Fermi resonance between the symmetric split vibrations v_{ss} and v_{sa} with the overtone of the CH bending modes which appear in this region and increase the separation between the v_{ss} and v_{sa} 30 modes. Thus the spectra end up with six different vibration modes: FRs, vss, vsa, FRa, vas and vaa, where FRs and FRa are the symmetric and asymmetric Fermi resonances, respectively, as shown in Figure 1