Organic Polyanionic High-Spin Molecular Clusters in Solution: Topological-Symmetry Controlled Models for Organic Ferromagnetic Metals with *meta*-Benzoylbenzene Linkers

Shigeaki Nakazawa,* ^{*a,b*} Kazunobu Sato,*^{*a,b*} Daisuke Shiomi,^{*a,b*} Masafumi Yano,^{*a*,§} Takamasa Kinoshita,^{*a*} Maria Luisa T. M. B. Franco,^{*c*} Maria Celina R. L. R. Lazana,^{*c*} Maria Candida B. L. Shohoji,^{*c*} The late Koichi Itoh^{*a*} and Takeji Takui*^{*a,b*}

^aDepartment of Chemistry and Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyosh-kui, Osaka 558-8585, Japan

^bCREST-JST, Chiyoda-ku, Tokyo 102-0075, Japan ^cDepartment of Chemistry, Instituto Superior Técnico, Universidade Técnica de Lisboa Pais, 1096 Lisboa Codex, Portugal

Contents of the Supplementary Information

1. The two-dimensional π -crystal orbital band structure of a two-dimensional system 4 (Fig. S1)

2. Optimized molecular structures for *m*-benzoylbenzene in its doublet and triplet states

- 2.1 The optimized molecular structures for $1^{-\bullet}K^+$ in the spin-doublet state (Fig. S2) and $1^{2-\bullet}(K^+)_2$ in the triplet state (Fig. S3) obtained by the DFT quantum chemical calculation (UB3LYP/6-311G*)
- 3. Optimized molecular structures for *m*-benzoylbenzene-based polyanionic high-spin clusters
- 3.1 The optimized structure for $1^{-\bullet}(K^+)_2 1^{-\bullet}$ in the triplet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G) (Fig. S4).
- 3.2 The optimized structure for $1^{2-\bullet}(K^+)_3 1^{-\bullet}$ in the quartet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G) (Fig. S5).
- 3.3 The optimized structure for $1^{2-\bullet}(K^+)_4 1^{2-\bullet}$ in the quintet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G) (Fig. S6).
- 4. The clustering structure of the dimer, [Fluorenone^{-•} {Na⁺(dimethoxyethan)₂}]₂ (Fig. S7), and the comparison of the lengths, Na-O, Na-Na, and O-O and angles, O-Na-O, and Na-O-Na between the X-ray single-crystal analysis and the structural optimization (Fig. S7).
- 5. Mulliken atomic charges for [Fluorenone^{-•} {Na⁺(dimethoxyethan)₂}]₂ (Tables S1 and S2)
- 6. The calculation of D_i of the intramolecular interaction in terms of point-dipole approximation
- 6.1 The calculation of the D_{12} tensors for the doublet, quartet, and quintet clusters in terms of point-dipole approximation
- 6.2 The *D* and *E* values for the quartet and quintet molecular clusters
- 7. The charge density and spin density for $1^{\bullet}K^+$ in the doublet state, $1^{2(-\bullet)}K_2$ in the triplet ground state, $1^{-\bullet}(K^+)_2 1^{-\bullet}$ in the triplet state, $1^{2(-\bullet)}(K^+)_3 1^{(-\bullet)}$ in the quartet state, $1^{2(-\bullet)}(K^+)_4 1^{2(-\bullet)}$ in the quintet state, as calculated by the DFT quantum chemical calculations (UB3LYP/6-31G*//UB3LYP/3-21G)
- 8. The charge density distribution and the spin density distribution for $1^{2(-\bullet)}(K^+)_2$ in the triplet state calculated by DFT method (UB3LYP/6-311++G** //UB3LYP/6-311G*)

1. The two-dimensional π -crystal orbital band structure of a two-dimensional system 4 (Fig. S1)

Fig. S1 The two-dimensional π -Crystal Orbital Band structure of a two-dimensional system 4. The arrow denotes the Lowest Unoccupied Crystal Orbitals (LUCOs), which are pseudo-flat bands. The flat bands originate in the 1,3,5-connectivity of oligoketones, not in the group-theoretical symmetry. The 2D polymeric system 4 incorporates extra electrons into the flat band in a ferromagnetically exchange-coupled manner in the ground state. The next LUCO is closely located above the LUCOs.

2. The optimized molecular structures for *m*-benzoylbenzene in its doublet and triplet states

2.1 The optimized molecular structures for $1^{-\bullet}K^+$ in the spin-doublet state (Fig. S2) and $1^{2-\bullet}(K^+)_2$ in the triplet state (Fig. S3) obtained by the DFT quantum chemical calculation (UB3LYP/6-311G*)

Fig. S2 The optimized molecular structure for $1^{\bullet}K^+$ in the spin-doublet state obtained by the DFT quantum chemical calculation (UB3LYP/6-311G*).

Fig. S3 The optimized structure for $1^{2-\bullet}(K^+)_2$ in the triplet state obtained by the DFT quantum chemical calculation (UB3LYP/6-311G*).

3. The optimized molecular structures for *m*-benzoylbenzene-based polyanionic high-spin clusters

3.1 The optimized structure for $1^{-6}(K^+)_2 1^{-6}$ in the triplet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G) (Fig. S4).

Fig. S4 The optimized structure for $1^{-\bullet}(K^+)_2 1^{-\bullet}$ in the triplet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G).

3.2 The optimized structure for $1^{2-\bullet}(K^+)_3 1^{-\bullet}$ in the quartet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G) (Fig. S5).

Fig. S5 The optimized structure for $1^{2-\bullet}(K^+)_3 1^{-\bullet}$ in the quartet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G).

3.3 The optimized structure for $1^{2-\bullet}(K^+)_4 1^{2-\bullet}$ in the quintet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G) (Fig. S6).

Fig. S6 The optimized structure for $1^{2-\bullet}(K^+)_4 1^{2-\bullet}$ in the quintet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G).

4. The clustering structure of the dimer, [Fluorenone^{-•} {Na⁺(dimethoxyethan)₂}]₂ (Fig. S7), and the comparison of the lengths, Na-O, Na-Na, and O-O and angles, O-Na-O, and Na-O-Na between the X-ray single-crystal analysis and the structural optimization (Fig. S7).

(c)

	X-ray Analysis	Optimization
Length/Å		
Na1-053	2.398	2.344
Na1-O2	2.282	2.325
Na54-O53	2.283	2.324
Na54-O2	2.398	2.344
Na1-Na54	3.350	3.270
053-02	3.270	3.333
Angle/Degrees		
O53-Na1-O2	88.6	91.1
O53-Na54-O2	88.6	91.1
Na1-O53-Na54	91.4	88.9
Na1-O2-Na54	91.4	88.9

Fig. S7 The clustering structure of the dimer, [Fluorenone^{-•} { $Na^+(dimethoxyethan)_2$ }]₂. **a**, **c**: The structures of the dimeric cluster, [Fluorenone^{-•} { $Na^+(dimethoxyethan)_2$ }]₂ determined by X-ray analysis. **b**, **d**: The optimized structures for [Fluorenone^{-•} { $Na^+(dme)_2$ }]₂ in the triplet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G). **e**: The comparison of the lengths, Na-O, Na-Na, and O-O and angles, O-Na-O, and Na-O-Na between the X-ray single-crystal analysis and the structural optimization.

(e)

5. Mulliken atomic charges for [Fluorenone^{-•} {Na⁺(dimethoxyethan)₂}]₂ (Tables S1 and S2)

Table S1Mulliken atomic charges for [Fluorenone^{-•} { Na^+ (dimethoxyethan)₂}]₂Note that atomic charges with hydrogens are non-vanishing and summed into the attached carbon atoms.

attachet	a cai boli ato	1115.					
1Na	.156597	31H	.000000	61C	031762	91C	041327
20	600824	32H	.000000	62C	.312250	92H	.000000
3 C	024160	33 H	.000000	63C	.300060	93C	066469
4 C	041288	3 4H	.000000	64C	.283897	94C	021034
5 C	027989	35H	.000000	65C	.297786	95H	.000000
6C	066458	36H	.000000	66C	.291617	96C	061849
7 C	061845	37 H	.000000	67C	.273595	97C	028005
8C	021376	38 H	.000000	68C	.272017	98H	.000000
9C	021030	39 H	.000000	69C	.307736	99H	.000000
10C	061624	40 H	.000000	70C	024047	100C	021379
11C	.319763	41 H	.000000	71C	.007416	101H	.000000
12C	042658	42 H	.000000	72C	061615	102H	.000000
13C	.007414	43 H	.000000	73C	.009115	103H	.000000
14C	.009118	4 4H	.000000	74H	.000000	104H	.000000
15C	031774	45H	.000000	75H	.000000	105H	.000000
16C	.312336	46 H	.000000	76H	.000000	106H	.000000
170	457486	47 H	.000000	77H	.000000	107H	.000000
18C	.300058	48 H	.000000	78H	.000000	108H	.000000
19C	.283903	49 H	.000000	79H	.000000	109H	.000000
200	458500	50H	.000000	80H	.000000	110H	.000000
21C	.297792	51H	.000000	81H	.000000		
22C	.291609	52 H	.000000	82H	.000000		
230	467870	530	600851	83H	.000000		
24C	.273573	54Na	.156432	84H	.000000		
25C	.271950	55C	.319771	85H	.000000		
260	446884	560	457479	86H	.000000		
27C	.307745	570	458508	87H	.000000		
28 H	.000000	580	467853	88H	.000000		
29 H	.000000	590	446884	89H	.000000		
30H	.000000	60C	042725	90H	.000000		

1Na	002399	31H	.002086	61C	026853	91C	035931
20	.239565	32H	.002109	62C	.003019	92H	004706
3 C	.094146	33 H	007048	63C	.000212	93C	064346
4C	035943	34H	.001021	64C	.000105	94C	040127
5 C	.143915	35H	005068	65C	.000306	95H	005068
6C	064352	36H	000151	66C	.000232	96C	064549
7C	064545	37H	.000169	67C	.000414	97C	.143911
8C	.142852	38H	.001039	68C	000033	98H	.000857
9C	040123	39H	.000033	69C	.001633	99H	.002086
10C	.102752	40H	000671	70C	.094144	100C	.142861
11C	.307343	41H	.000007	71C	.120613	101H	.001021
12C	024503	42H	000012	72C	.102762	102H	.002109
13C	.120609	43 H	000078	73C	.118429	103H	007134
14C	.118419	44 H	000378	74H	000150	104H	007049
15C	026842	45 H	000027	75H	.000168	105H	000173
16C	.003025	46H	.000253	76H	.001036	106H	.000820
170	.000220	47H	000019	77H	.000033	107H	000204
18C	.000213	48 H	000688	78H	000672	108H	000205
19C	.000105	49H	.000178	79H	.000007	109H	.000822
200	.000304	50H	.000006	80H	000012	110H	000173
21C	.000306	51H	000017	81H	000078		
22C	.000231	52H	000005	82H	000378		
230	.000232	530	.239557	83H	000027		
24C	.000414	54Na	002391	84H	.000255		
25C	000032	55C	.307371	85H	000019		
260	.000247	560	.000221	86H	000688		
27C	.001633	570	.000304	87H	.000177		
28H	004706	580	.000230	88H	.000006		
29 H	.000857	590	.000248	89H	000017		
30H	007134	60C	024529	90H	000005		

Table S2 Mulliken atomic spin densities for [Fluorenone^{-•} { Na^+ (dimethoxyethan)₂}]₂

6. The Calculation of D_i of the intramolecular interaction in terms of point-dipole approximation

Dipolar spin-spin interaction between electron spins, S_1 and S_2 is given by

$$W_{SS} = \left(\frac{\mu_0}{4\pi}\right) (g\beta)^2 \left\{\frac{S_1 \bullet S_2}{r_{12}^3} - \frac{3(S_1 \bullet r_{12})(S_2 \bullet r_{12})}{r_{12}^5}\right\}, \quad (S1)$$

 \mathbf{r}_{12} is the distance vector from an electron i to j, μ_0 is the permeability of free space, and β is Bohr magneton. The *D* tensor corresponding to the dipolar interaction can be calculated in terms of a wave function Ψ_T ,

$$\mathbf{D} = \int \boldsymbol{\psi}_T^* W_{SS} \boldsymbol{\psi}_T dv_1 dv_2 \,. \tag{S2}$$

The calculation of the **D** tensor for the intramolecular triplet state was made by the point-dipole approximation with the optimized molecular structure and the coefficients of $2p_{x,y,z}$ of the LUMOs and next LUMOs with α spins. We assume that each $2p_{x,y,z}$ orbital is approximated in terms of a pair of points separated by 0.68 Å from the position of the carbon atom along the x, y, z directions. The MOs were calculated by the DFT method (USVWN/sto-3g). The *D* and *E* values are calculated to be -0.00427 cm⁻¹ and 0.00108cm⁻¹, respectively. The sign of the *D* value is negative. The principal direction for D_z is close to along the long-axis of the molecule.

6.1 The Calculation of the D_{12} tensors for the doublet, quartet, and quintet clusters in terms of point-dipole approximation

Fig. S8. The orientation of the principal axes of the D_1 tensor for the intramolecular triplet state of *m*-benzoylbenzene dianion.

The D_{12} tensors for the quartet and quintet states of the molecular clusters were estimated by a semi-empirical method with both the observed *D* value for the triplet cluster and the theoretical *D* value obtained by the point-dipole approximation approach, in which the optimized molecular structure and the calculated α spin density distribution are employed. The spin density distributions were calculated by the DFT method (UB3LYP/6-31G*//UB3LYP/3-21G). The calculated D_{12}^c was obtained by the following equation,

$$\mathsf{D}_{12}^{\mathsf{c}} = \sum_{i,j} \rho_{\mathsf{i}} W_{ss} \rho_{j} \qquad (S3)$$

where ρ_i denotes the spin density on the i_{th} atom in one dibenzoylbenzene moiety and ρ_j the spin density on the j_{th} atom in the other dibenzoylbenzene moiety. The calculated results for the high-spin clusters are in the following:

 D_{12}^{c} (triplet cluster) = -0.0041 cm⁻¹, D_{12}^{c} (quartet cluster) = -0.0064 cm⁻¹, D_{12}^{c} (quintet cluster) = -0.0070 cm⁻¹.

Fig. S9 The principal axes of the D tensor for the intermolecular dianionic triplet state.

Fig. S10 The principal axes of the D_{12} tensor for the tetraanionic quartet state. The direction of D_z is along the direction connected between the dibenzoylbenzene molecules.

Fig. S11 The principal axes of the D_{12} tensor for the tetraanionic quintet state. The direction of D_z is along the direction connected between the dibenzoylbenzene molecules.

Table S3. The D ₁₂ -values for the triplet, quartet, and quintet clusters calculated	by
Equation S3 in terms of the optimized molecular structures and the calculated sp	pin
density distributions.	

	Calculated					
	S = 1	S = 3/2	<i>S</i> = 2			
D_{12} / cm^{-1}	-0.0041	-0.0064	-0.0070			

The \mathbf{D}_{12} tensors for the quartet and quintet clusters were estimated by the following equations which include \mathbf{D}_{12} derived from the observed *D* value of the dianionic triplet cluster and the calculated D_{12}^{c} -values.

$$D_{12}(\text{quartet cluster}) = D_{12}(\text{triplet cluster}) \times \frac{D_{12}^{c}(\text{quartet cluster})}{D_{12}^{c}(\text{triplet cluster})}$$
$$D_{12}(\text{quintet cluster}) = D_{12}(\text{triplet cluster}) \times \frac{D_{12}^{c}(\text{quintet cluster})}{D_{12}^{c}(\text{triplet cluster})}.$$
(S4)

The results are as follows:

 $D_{12}(quartet) = -0.0281 \text{ cm}^{-1},$ $D_{12}(quintet) = -0.0307 \text{ cm}^{-1}.$

Table 54. The D ₁₂ -values for the high-spin clusters estimated by Equations 54	Table S4.	The D_{12} -	values for	the hi	igh-spin	clusters	estimate	d by	Equations	S4.
--	-----------	----------------	------------	--------	----------	----------	----------	------	-----------	-----

	Calculated			
	S = 1	S = 3/2	S = 2	
D_{12} / cm^{-1}	-0.018	-0.0281	-0.0307	

6.2 The D and E values for the quartet and quintet molecular clusters

The **D** tensor for the quartet cluster is calculated by using **D**₁ and **D**₁₂ (quartet cluster). The *D* and *E values* are -0.0135 cm⁻¹ and 0.00097 cm⁻¹, respectively. The **D** tensor for the quintet cluster is calculated by Equation 12 with **D**₁ and **D**₁₂ (quintet cluster). The *D* and *E* values are -0.0096 cm⁻¹ and 0.0 cm⁻¹, respectively.

with the observed value	les.	
	Observed	Calculated
S = 3/2		
D / cm^{-1}	0.0066	-0.0135
E / cm^{-1}	< 0.0002	0.00097
S = 2		
D / cm^{-1}	0.00585	-0.0096
E / cm^{-1}	< 0.0002	0.0

Table S5. The calculated D and E values for the quartet and quintet clusters compared with the observed values.

7. The charge density and spin density for $1^{-\bullet}K^+$ in the doublet state, $1^{2(-\bullet)}K_2$ in the triplet ground state, $1^{-\bullet}(K^+)_2 1^{-\bullet}$ in the triplet state, $1^{2(-\bullet)}(K^+)_3 1^{(-\bullet)}$ in the quartet state, $1^{2(-\bullet)}(K^+)_4 1^{2(-\bullet)}$ in the quintet state, as calculated by the DFT quantum chemical calculations (UB3LYP/6-31G*//UB3LYP/3-21G)

Fig. S12 (a) The charge density and (b) the spin density for $1^{\bullet}K^+$ in the doublet state, as calculated by the DFT quantum chemical calculations (UB3LYP/6-31G*//UB3LYP/3-21G). The red and blue colors indicate positive and negative charge densities, respectively. The green and purple colors indicate α and β spin densities, respectively.

Fig. S13 (a) The charge density and (b) the spin density for $1^{2(-\bullet)}K_2$ in the triplet ground state, as calculated by the DFT quantum chemical calculations (UB3LYP/6-31G*//UB3LYP/3-21G). The red and blue colors indicate positive and negative charge densities, respectively. The green and purple colors indicate α and β spin densities, respectively.

Fig. S14 (a) The charge density and (b) the spin density for $1^{-\bullet}(K^+)_2 1^{-\bullet}$ in the triplet state calculated by DFT method (UB3LYP/6-31G*//UB3LYP/3-21G). The red and blue colors indicate positive and negative charge densities, respectively. The green and purple colors indicate α and β spin densities, respectively.

Fig. S15 (a) The charge density and (b) the spin density for $1^{2(-\bullet)}(K^+)_3 1^{(-\bullet)}$ in the quartet state calculated by DFT method (UB3LYP/6-31G*//UB3LYP/3-21G). The red and blue colors indicate positive and negative charge densities, respectively. The green and purple colors indicate α and β spin densities, respectively.

Fig. S16 (a) The charge density and (b) the spin density for $1^{2(-\bullet)}(K^+)_4 1^{2(-\bullet)}$ in the quintet state calculated by DFT method (UB3LYP/6-31G*//UB3LYP/3-21G). The red and blue colors indicate positive and negative charge densities, respectively. The green and purple colors indicate α and β spin densities, respectively.

8. The charge density distribution and the spin density distribution for $1^{2(-\bullet)}(K^+)_2$ in the triplet state calculated by DFT method (UB3LYP/6-311++G** //UB3LYP/6-311G*)

Fig. S17 (a) The charge density distribution and (b) the spin density distribution for $1^{2(-\bullet)}(K^+)_2$ in the triplet state calculated by DFT method (UB3LYP/6-311++G** //UB3LYP/6-311G*). The red and blue colors indicate positive and negative charge densities, respectively. The green and purple colors indicate α and β spin densities, respectively.

9. The molecular structures of fluorenone-based diketone 5 and 1,3,5- tribenzoyl benzene 6

Fig. S18 Fluorenone-based diketone 5 and 1,3,5- tribenzoyl benzene 6.

10. Atomic coordinates of the optimized structures for 1^{-•}K⁺ and the molecular high0spin clusters obtained by the DFT quantum chemical calculations

10.1 Atomic coordinates of the optimized structure for $1^{-\bullet}K^+$ in the spin-doublet state obtained by the DFT quantum chemical calculation (UB3LYP/6-311G*)

С	-0.075918	0.114960	0.353161
С	1.186456	-0.486313	0.087203
С	1.113522	-1.820805	-0.411820
С	-0.093305	-2.381678	-0.796573
С	-1.306499	-1.675389	-0.700716
С	-1.286301	-0.409487	-0.095001
С	2.349591	0.351865	0.295442
С	3.751554	-0.120821	0.208791
С	4.699506	0.491208	1.054107
С	6.039203	0.130323	1.018765
С	6.488289	-0.837424	0.117389
С	5.574419	-1.425389	-0.754527
С	4.227522	-1.073490	-0.712728
С	-2.456416	0.510081	-0.061593
С	-3.844345	-0.006149	0.099460
С	-4.116809	-1.221494	0.743878
С	-5.432590	-1.641830	0.921737
С	-6.485981	-0.861119	0.451641
С	-6.224002	0.353532	-0.186113
С	-4.914267	0.782437	-0.350285
0	-2.268145	1.727548	-0.184042
0	2.156578	1.587694	0.617307
Н	-0.090072	1.001626	0.970704
Н	2.011125	-2.418881	-0.501766
Н	-0.097934	-3.387290	-1.206973
Н	-2.218534	-2.087836	-1.114847
Н	4.350853	1.256275	1.737602

Н	6.741791	0.607641	1.696162
Н	7.536704	-1.117256	0.086234
Н	5.913004	-2.154460	-1.485302
Н	3.556399	-1.506393	-1.444090
Н	-3.300260	-1.823181	1.124130
Н	-5.634647	-2.577840	1.432111
Н	-7.510422	-1.193425	0.586547
Н	-7.044239	0.964509	-0.548986
Н	-4.694743	1.730503	-0.827241
Κ	0.326934	2.818209	-0.613880

10.2 Atomic coordinates of the optimized structure for $1^{2-\bullet}(K^+)_2$ in the triplet state obtained by the DFT quantum chemical calculation (UB3LYP/6-311G*)

С	0.181073	0.008300	0.286863
С	-1.073942	0.633613	0.091712
С	-1.024704	2.035695	-0.161037
С	0.217519	2.664904	-0.318426
С	1.428177	1.977133	-0.287594
С	1.438942	0.580131	-0.012371
С	-2.244382	-0.246808	0.161349
С	-3.615844	0.131103	-0.198000
С	-4.676280	-0.676599	0.281822
С	-6.000461	-0.396208	-0.024324
С	-6.326526	0.688191	-0.841874
С	-5.295539	1.471968	-1.362683
С	-3.967754	1.201714	-1.053667
С	2.523081	-0.378279	-0.191957
С	3.943530	-0.012649	-0.147400
С	4.442708	1.152803	0.475569
С	5.805225	1.425304	0.508418
С	6.721766	0.544485	-0.069336
С	6.249269	-0.627093	-0.666555
С	4.890372	-0.905342	-0.698365
0	2.202861	-1.616333	-0.409655
0	-2.045930	-1.474144	0.603003
Н	0.201418	-1.023568	0.597774
Н	-1.926665	2.628875	-0.219314
Н	0.231265	3.732053	-0.526302
Н	2.340899	2.499333	-0.546051
Н	-4.422587	-1.538987	0.886695
Н	-6.787870	-1.032070	0.371376
Н	-7.361735	0.906225	-1.084235
Н	-5.527411	2.296008	-2.031557
Н	-3.194274	1.795633	-1.521642
Н	3.758774	1.832225	0.970824
Н	6.157898	2.327447	1.001144
Н	7.785297	0.761013	-0.043666
Н	6.951217	-1.329201	-1.108862
Н	4.520042	-1.819084	-1.147443
Κ	-0.089524	-2.339640	-1.324743
Κ	-1.262008	-0.552271	2.810091

10.3 Atomic coordinates of the optimized structure for $1^{-\bullet}(K^+)_2 1^{-\bullet}$ in the triplet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G)

С	0.303191	-2.943909	-0.422439
С	1.561481	-3.381919	-0.018953
С	1.670639	-4.299217	1.045478
С	0.489926	-4.789634	1.627849
С	-0.762463	-4.331993	1.236713
С	-0.891582	-3.324042	0.235976
С	2.722719	-2.697624	-0.655360
С	4.007281	-3.420727	-0.858905
С	5.154909	-2.651442	-1.109455
С	6.379941	-3.267963	-1.339524
С	6.467513	-4.664794	-1.343437
С	5.325238	-5.438040	-1.122917
С	4.097342	-4.821034	-0.880642
С	-2.096115	-2.636425	-0.178032
С	-3.435289	-3.002372	0.326015
С	-3.738676	-3.212952	1.692696
С	-5.056545	-3.389340	2.116939
С	-6.114639	-3.359153	1.201024
C	-5.835062	-3.148611	-0.157599
C	-4.522764	-2.964411	-0.586448
8	-2.014485	-1.654941	-1.065145
8	2,609040	-1.499693	-1.014652
Ĥ	0.210066	-2.331169	-1.308761
Н	2.639900	-4.604607	1.417459
Н	0.558268	-5.534218	2.414018
Н	-1.648388	-4.752036	1.694903
Н	5.055445	-1.572980	-1.118928
Н	7.264294	-2.668523	-1.521379
Н	7.420725	-5.147537	-1.526201
Н	5.389463	-6.519536	-1.146512
Н	3.205653	-5.415688	-0.729570
Н	-2.941005	-3.190357	2.425335
Н	-5.261485	-3.535518	3.172322
Н	-7.135296	-3.501123	1.536052
Н	-6.643885	-3.144475	-0.881578
Н	-4.300724	-2.809753	-1.637577
С	0.211830	2.924677	0.404048
С	1.449938	3.432589	0.020656
С	1.517007	4.419680	-0.983118
С	0.314987	4.903475	-1.525379
С	-0.916898	4.377412	-1.155586
C	-1.001628	3.304876	-0.219718
C	2.641535	2.752919	0.602813
C	3.897600	3.511784	0.850129
C	5.076671	2.774400	1.044884
C	6.277100	3.423210	1.312673
Ĉ	6.308471	4.819011	1.411055
Ĉ	5.134881	5.558475	1.246488
Ĉ	3.931581	4.909913	0.966150
C	-2.178857	2.552810	0.161016

С	-3.534771	2.902438	-0.307054
С	-3.861039	3.198842	-1.652611
С	-5.188767	3.359768	-2.051037
С	-6.234851	3.228810	-1.130237
С	-5.932799	2.932307	0.207368
С	-4.610337	2.763255	0.610084
0	-2.054195	1.524333	0.988038
0	2.578042	1.529879	0.879690
Н	0.147023	2.252548	1.249368
Н	2.471699	4.783293	-1.340214
Н	0.349928	5.698742	-2.262568
Н	-1.821092	4.794400	-1.579502
Н	5.020762	1.694594	0.982121
Н	7.185827	2.849161	1.451154
Н	7.242523	5.326405	1.623514
Н	5.155532	6.637616	1.343074
Н	3.015995	5.476994	0.857831
Н	-3.071766	3.257289	-2.392334
Н	-5.410510	3.573967	-3.091327
Н	-7.263391	3.359650	-1.445056
Н	-6.732516	2.849503	0.936745
Н	-4.370803	2.544200	1.645871
Κ	-3.918762	-0.072051	-0.059947
Κ	0.294991	-0.001516	-0.087493

10.4 Atomic coordinates of the optimized structure for $1^{2-\bullet}(K^+)_3 1^{-\bullet}$ in the quartet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G)

С	2.340607	-1.797773	-0.218769
С	3.697013	-1.533276	-0.381569
С	4.304851	-1.839485	-1.590545
С	3.535105	-2.380455	-2.616393
С	2.166682	-2.538297	-2.477208
С	1.527930	-2.215405	-1.271537
С	4.359190	-0.726936	0.730278
С	5.758275	-1.057966	1.212597
С	6.466998	-0.091429	1.923702
С	7.739460	-0.364105	2.396271
С	8.309023	-1.609580	2.168849
С	7.604470	-2.580404	1.471102
С	6.333422	-2.306578	0.992887
С	0.044271	-2.103874	-1.090149
С	-0.877845	-3.207908	-1.477941
С	-0.425843	-4.522045	-1.686120
С	-1.304150	-5.540642	-1.993899
С	-2.670288	-5.295934	-2.095536
С	-3.140892	-4.011058	-1.898810
С	-2.258322	-2.979296	-1.601283
0	-0.408052	-1.051926	-0.373043
0	3.729324	0.218321	1.213893
Н	1.895442	-1.651802	0.755648
Н	5.355255	-1.633526	-1.749024
Н	4.006509	-2.622470	-3.561311

Н	1.580993	-2.883453	-3.319732
Н	6.009311	0.874841	2.099607
Н	8.287621	0.392221	2.943420
Н	9.303971	-1.825256	2.539248
Н	8.046508	-3.553677	1.300666
Н	5.783498	-3.068728	0.455955
Н	0.629108	-4.739197	-1.593339
Н	-0.926166	-6.544419	-2.146810
Н	-3.353823	-6.100564	-2.330237
Н	-4.199547	-3.798610	-1.989018
Н	-2.646304	-1.973144	-1.512215
С	-1.968420	2.155875	0.689176
Ċ	-1 708754	3 280174	-0 103912
C	-2 804241	4 074270	-0.463123
C	-4 077319	3 726038	-0.036024
C	-4 316756	2 575558	0.695117
C	-3 256568	1 731863	1 068697
C	-0.313604	3 445293	-0.658897
C C	0.346528	4 766443	-0 745080
C C	1 495616	4 909630	-1 538666
C C	2 167715	6 112936	-1.556000
C	1 710213	7 218338	-0.012174
C	0 590604	7.005/130	-0.115953
C	0.094345	5 802044	-0.113933
C	-0.084343	0.460147	1 817328
C C	-3.332100	0.400147	1.01/520
C	-4.4824/4	-0.402379	1./38349
C	-3.488/1/	-0.433062	0./30099
C	-0.40//90	-1.390/4/	0.008150
C	-0.509000	-2.459667	1.509291
C	-5.543318	-2.522027	2.555035
C	-4.554627	-1.552593	2.64///6
0	-2.25/693	0.0615/5	2.4/4352
0	0.246158	2.377175	-1.252812
Н	-1.140/98	1.564495	1.052583
H	-2.661922	4.947789	-1.082485
H	-4.914668	4.358968	-0.306578
Н	-5.326090	2.342727	0.998547
Н	1.844638	4.049233	-2.092939
Н	3.049479	6.195065	-2.244614
Н	2.243990	8.161361	-0.977154
Н	0.235058	7.949019	0.448029
Н	-0.953609	5.816634	0.609578
Н	-5.479273	0.352752	0.000287
Н	-7.214831	-1.335125	-0.114838
Н	-7.281639	-3.210720	1.500422
Н	-5.563895	-3.326878	3.280993
Н	-3.862759	-1.577033	3.477654
Κ	1.317645	0.799045	0.262141
Κ	-2.037751	-2.041542	1.246099
Κ	-1.523744	0.743594	-1.702700

10.5 Atomic coordinates of the optimized structure for $1^{2-\bullet}(K^+)_4 1^{2-\bullet}$ in the quintet state obtained by the DFT quantum chemical calculation (UB3LYP/3-21G)

С	1.188174	1.451536	-1.556073
С	1.131157	2.847668	-1.380442
С	2.152904	3.616579	-1.992917
С	3.135694	2.982704	-2.758568
С	3.151648	1.593886	-2.948056
Ċ	2.161531	0.791455	-2.326458
C	-0.062107	3 362366	-0 700022
C	-0.040587	4 536115	0.154855
C	-1 287342	5.063111	0.605261
C	-1 340748	6 113816	1 515480
C C	-0 162692	6 680875	2 021652
C C	1 073734	6 174408	1 592366
C	1.075754	5 125245	0.682956
C	2 000312	0.673710	2 440475
C	2.009312	-0.073719	-2.440473
C	5.155804	-1.303344	-2.452157
C	4.499309	-1.103287	-2.152452
C	5.51/515	-2.101/59	-2.002558
C	5.261566	-3.4/3649	-2.132846
C	3.954048	-3.890740	-2.424200
C	2.927712	-2.96/331	-2.561873
0	0.783166	-1.174970	-2.326429
0	-1.178043	2.640139	-0.780436
H	0.481042	0.851628	-0.999069
Н	2.135770	4.697148	-1.917708
Н	3.884210	3.588793	-3.259758
Н	3.879019	1.145705	-3.614169
Н	-2.193130	4.648389	0.176414
Н	-2.304466	6.510280	1.821357
Н	-0.205254	7.502556	2.726856
Н	1.992626	6.600949	1.981994
Н	2.105468	4.726654	0.391693
Н	4.734648	-0.108405	-2.061984
Н	6.525826	-1.760293	-1.789545
Н	6.061312	-4.196193	-2.023776
Н	3.744745	-4.948577	-2.551408
Н	1.928304	-3.292022	-2.824826
С	-1.558814	-1.030763	1.137538
С	-2.850116	-1.572377	0.893129
С	-3.343632	-2.517009	1.841070
С	-2.566126	-2.884788	2.938984
С	-1.284234	-2.362406	3.146621
С	-0.748068	-1.420169	2.227631
С	-3.478241	-1.294884	-0.396391
С	-4.920787	-1.388341	-0.606403
С	-5.394550	-1.482994	-1.938550
С	-6.753964	-1.544925	-2.219292
Ċ	-7.695687	-1.498351	-1.183277
Ċ	-7.248524	-1.376552	0.137952
Ċ	-5.887823	-1.317762	0.426565
Č	0.559915	-0.776408	2.384965
Č	1 686412	-1 439801	3 028806
č	1 835614	-2.850281	3 148302
č	3 010994	-3 410635	3 636673
č	4 089203	-2.602797	4 029089
-			

С	3.963435	-1.209599	3.927983
С	2.794801	-0.636847	3.436185
0	0.756546	0.427602	1.849860
0	-2.689827	-1.001550	-1.426433
Н	-1.158180	-0.329769	0.412095
Н	-4.306646	-2.984270	1.679130
Н	-2.963841	-3.604255	3.648872
Н	-0.715567	-2.642002	4.024546
Н	-4.657797	-1.515425	-2.731519
Н	-7.088366	-1.631071	-3.248370
Н	-8.756272	-1.545136	-1.401288
Н	-7.968868	-1.312747	0.946849
Н	-5.563232	-1.181487	1.451013
Н	1.023687	-3.495201	2.832873
Н	3.096282	-4.490374	3.707391
Н	4.999354	-3.048068	4.412880
Н	4.778191	-0.569758	4.254137
Н	2.681587	0.441185	3.387832
Κ	-1.221729	2.103172	1.791241
Κ	-1.419632	0.785515	-2.688930
Κ	2.848747	-0.355251	0.406470
Κ	-0.744705	-2.770503	-1.010437

10.6 Atomic coordinates of the optimized structure of the dimeric cluster for [Fluorenone^{-•} {Na⁺(dimethoxyethan)₂}]₂ calculated by UB3LYP/3-21G

Na	-0.14575806	-1.60830379	0.25451523
0	1.50755692	-0.25549775	-0.66209173
С	2.58084798	0.19007227	2.25483227
С	3.30852485	0.42336926	3.42311835
С	4.71727705	0.48276424	3.40034628
С	5.42019701	0.28522524	2.20591521
С	6.39320993	-0.29949975	-0.93472177
С	6.49284601	-0.56664574	-2.30434871
С	5.33477306	-0.74555469	-3.08511066
С	4.06613874	-0.65472472	-2.51423979
С	2.76778293	-0.22459073	-0.29347277
С	3.27517390	0.01146727	1.05115533
С	4.70913315	0.04397427	1.03070033
С	5.13294172	-0.20650972	-0.34760576
С	3.94658089	-0.37843275	-1.14317274
С	2.45317483	-3.61276460	-0.34873176
0	1.40076196	-3.43992662	0.66549522
С	1.94378388	-3.28966069	2.02083135
С	0.74415594	-3.14999056	2.94011140
0	0.04547095	-1.91978574	2.56139827
С	-1.28002608	-1.82363582	3.18956637
С	0.24178395	-2.09390163	-3.05667162
0	-0.25523403	-2.64237070	-1.79561675
С	-1.23825812	-3.71682072	-1.93128169
С	-1.40945113	-4.28699160	-0.52384174
0	-1.92836308	-3.27922559	0.41242924
С	-3.38674212	-3.10373569	0.30193123

Н	1.50397193	0.07714027	2.27747035
Н	2.78756595	0.54672527	4.36782312
Н	5.26058197	0.66716129	4.32042694
Н	6.50502682	0.31535625	2.20117640
Н	7.29087782	-0.16980273	-0.33878377
Н	7.46921778	-0.64227372	-2.76932168
Н	5.43544912	-0.96058470	-4.14356089
Н	3.18005395	-0.80514973	-3.12163568
Н	1.91733396	-3.58233166	-1.29488468
Н	2.96610403	-4.57383871	-0.21493076
Н	3.17209387	-2.78987861	-0.31163475
Н	2.53055000	-4.17437649	2.30518532
Н	2.56789684	-2.39280176	2.07424331
Н	1.07079995	-3.10559273	3.98772526
Н	0.07439994	-4.00830889	2.79841137
Н	-1.19218612	-1.66960180	4.27254725
Н	-1.74745011	-0.96897274	2.70693231
Н	-1.86194110	-2.72636962	2.97477126
Н	-0.57296908	-1.69857478	-3.67293477
Н	0.79528695	-2.85591769	-3.62312269
Н	0.90496993	-1.29281473	-2.73158169
Н	-2.17580914	-3.32019377	-2.33798671
Н	-0.85807508	-4.50428343	-2.59841466
Н	-0.42416504	-4.53158855	-0.12505077
Н	-2.06170797	-5.17084169	-0.53997278
0	-1.50751603	0.25599027	0.66224325
Na	0.14560895	1.60876024	-0.25440177
С	-2.76771998	0.22489028	0.29354224
0	-1.40088904	3.44060445	-0.66553676
0	-0.04618206	1.91979420	-2.56120181
0	0.25456497	2.64353442	1.79566228
0	1.92856395	3.27920723	-0.41255075
С	-3.27501512	-0.01182173	-1.05101371
С	-3.94657016	0.37906227	1.14309835
С	-2.45278502	3.61374545	0.34920424
С	-1.94477904	3.28916931	-2.02039671
С	-0.74574608	3.14933825	-2.94041777
С	1.27919090	1.82406425	-3.18965864
С	-0.24114905	2.09406543	3.05681920
C	1.23888397	3.71683335	1.93121934
C	1.41010094	4.28710127	0.52383322
C	3.38695884	3.10357428	-0.30258477
C	-2.58059216	-0.19111173	-2.25453472
С	-4.70897388	-0.04432773	-1.03063571
C	-4.06621504	0.65589827	2.51405025
С	-5.13287592	0.20677628	0.34752825
Н	-1.91640413	3.58379340	1.29506135
H	-2.96594501	4.57467127	0.21522924
H	-3.17160296	2.79073238	0.31282625
Н	-2.53210402	4.17/344046	-2.30498171
H	-2.56856704	2.39201927	-2.07273173
Н	-1.0/312310	5.10390925	-5.98775673
H	-0.0/633106	4.00812626	-2./99927/1
Н	1.1911/498	1.00956127	-4.2/25610/

Н	1.74713898	0.96980029	-2.70682478
Н	1.86073196	2.72715831	-2.97535181
Н	0.57423896	1.69813025	3.67183423
Н	-0.79392910	2.85568333	3.62450027
Н	-0.90473706	1.29328823	2.73178840
Н	2.17617583	3.31899428	2.33734131
Н	0.85991794	4.50452328	2.59877038
Н	0.42484796	4.53207731	0.12518224
Н	2.06265092	5.17072916	0.53993726
С	-3.30818415	-0.42506373	-3.42273664
Н	-1.50371408	-0.07828073	-2.27711082
С	-5.41995430	-0.28623775	-2.20576859
С	-5.33488512	0.74691427	3.08480740
Н	-3.18016696	0.80660528	3.12143326
С	-6.39318228	0.29996327	0.93453324
С	-4.71694231	-0.48444375	-3.40003276
Н	-2.78716302	-0.54895669	-4.36733675
Н	-6.50478411	-0.31638774	-2.20109081
С	-6.49290609	0.56765831	2.30404639
Н	-5.43563223	0.96236432	4.14316511
Н	-7.29081106	0.16998927	0.33859724
Н	-5.26017904	-0.66935474	-4.32005215
Н	-7.46930790	0.64344031	2.76893139
Н	-3.68065596	-2.73889375	-0.68554276
Н	-3.89638400	-4.05132866	0.52178723
Н	-3.65797901	-2.35013175	1.03940833
Н	3.65786791	2.34996033	-1.04016471
Н	3.89661694	4.05112219	-0.52259678
Н	3.68119287	2.73868632	0.68478322