Polymer - Induced Recovery of Nanoparticles from Microemulsions Supporting Information

Olesya Myakonkaya^{*} Julian Eastoe^{*†} Kevin J. Mutch^{*‡} Isabelle Grillo[§]

May 28, 2010

1 Scattering for Schultz polydisperse spheres with an attractive square-well potential

The scattering from a dispersion of polydisperse spherical droplets of radius *R*, volume V_p , volume fraction ϕ_p and coherent scattering length density ρ_p , dispersed in a medium of density ρ_m , can be expressed as ¹:

$$I(Q) = \phi_p (\rho_p - \rho_m)^2 V_p \left[\sum_i (P(Q)X] S(Q) \right]$$
(1)

P(Q) is the form factor of a homogeneous, monodisperse sphere of radius R, defined as¹:

$$P(Q) = \left[\frac{3\left(\sin(QR) - (QR)\cos(QR)\right)}{(QR)^3}\right]^2 \tag{2}$$

X is a Schultz distribution function, which can be expressed as²:

^{*}School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

[†]E-mail: Julian.Eastoe@bristol.ac.uk

[‡]Current address: Condensed Matter Physics Laboratory, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.

[§]Max-Von-Laue-Paul-Langevin, BP 156-X, F-38042 Grenoble Cedex, France

$$X = \left(\frac{Z+1}{R^{av}}\right)^{Z+1} R^Z \exp\left[-\left(\frac{Z+1}{R^{av}}\right)R\right] \frac{1}{\Gamma(Z+1)}, Z > -1$$
(3)

where R^{av} is the average radius, $\Gamma(X)$ is the gamma function, Z - width parameter, related to the mean root square deviation of the radius:

$$\delta = \frac{R^{av}}{(Z+1)^{1/2}} \tag{4}$$

The structure factor S(Q) was described by Sharma and Sharma as³:

$$S(Q) = \frac{1}{1 - c(Q)}\tag{5}$$

where the total direct correlation function c(Q) can be written as a sum of the hard sphere (c_{hs}) and square-well (c_{sw}) direct correlation functions: $c(r) = c_{hs} + c_{sw}$.

References

- Eastoe, J. Surface Active Agent Chemistry; Wuhan University Press: Wuhan, China, 2005.: 2005.
- [2] Kotlarchyk, M.; Chen, S.-H.; Huang, J. S.; Kim, M. W. Phys. Rev. A 1984, 29, 2054 – 2069.
- [3] Sharma, R.; Sharma, K. Physica 1977, 89A, 213 218.