Electronic Supporting Information for Phys. Chem. Chem. Phys. 2010

Thermochemistry of Imidazolium-Based Ionic Liquids:

Experiment and First-Principles Calculations

Sergey P. Verevkin^a, Vladimir N. Emel'yanenko, Dzmitry H. Zaitsau, Andreas Heintz Chris D. Muzny, Michael Frenkel

* To whom correspondence should be addressed:

E-mail: sergey.verevkin@uni-rostock.de

Compounds	Formula	$\frac{\rho}{q \cdot cm^{-3}}$	$\frac{c_p}{I \cdot K^{-1} \sigma^{-1}}$	$\frac{10^{-6} \cdot (\delta V / \delta T)_p^a}{dm^3 \cdot K^{-1}}$
$[C_2MIM][N(CN)_2]$	C ₈ H ₁₁ N ₅	1.080	1.20	1.0
polyethene ^b	CH _{1.93}	0.920	2.53	0.1
Cotton ^c	$CH_{1.774}O_{0.887}$	1.500	1.67	0.1

TABLE S1. Formula, density ρ (T = 293 K), massic heat capacity c_p (T = 298.15 K), and expansion coefficients ($\delta V/\delta T$)_p of the materials used in the present study.

a Estimated. b From 10 combustion experiments, $\Delta_c u^\circ = -(46354.5.0\pm4.0) \text{ J}\cdot\text{g}^{-1}$. c From 10 combustion experiments, $\Delta_c u^\circ = -(16945.2\pm4.2) \text{ J}\cdot\text{g}^{-1}$.

TABLE S2. Results for typical combustion experiments at T = 298.15 K ($p^\circ = 0.1$ MPa) of the [C₂MIM][N(CN)₂].^a

m (substance) $/g b$	0.384822	0.425841	0.414895	0.455825	0.438668	0.422283
m'(cotton) /g b	0.000778	0.000888	0.000925	0.000988	0.000959	0.001017
m"(polythen) /g b	0.326027	0.332255	0.334651	0.323307	0.361073	0.306961
$\Delta T_c / K^c$	1.75134	1.84943	1.83622	1.8783	1.96348	1.76402
$(\epsilon_{calor}) \cdot (-\Delta T_c) / J$	-25934.2	-27386.7	-27191.1	-27814.3	-29075.7	-26121.9
$(\epsilon_{cont}) \cdot (-\Delta T_c) / J$	-32.00	-34.16	-33.88	-34.76	-36.54	-32.28
$\Delta U_{decomp} \ HNO_3 \ /J$	82.42	85.41	83.02	82.42	87.2	83.62
ΔU_{corr} /Jd	10.38	11.23	9.99	10.44	10.78	9.61
-m'· Δ_c u' /J	13.18	15.05	15.67	16.74	16.25	17.23
-m"· Δ_c u" /J	15112.82	15401.51	15512.58	14986.73	16737.36	14229.02
$\Delta_{c}u^{\circ}\left(\text{liq}\right)/\!\!\left(J\cdot g^{\text{-}1}\right)$	-27928.3	-27962.6	-27967.7	-27977.2	-27949.6	-27978.2

^a For the definition of the symbols see reference 18, calorimeter: $T_h = 298.15$ K; V(bomb) = 0.32 dm³; pⁱ(gas) = 3.04 MPa; mⁱ(H₂O) = 1.00 g; ^b Masses obtained from apparent masses. ^c $\Delta T_c = T^f - T^i + \Delta T_{corr}$; $(\epsilon_{cont}) \cdot (-\Delta T_c) = (\epsilon_{cont}^i) \cdot (T^i - 298.15 \text{ K}) + (\epsilon_{cont}^f) \cdot (298.15 \text{ K} - T^f + \Delta T_{corr})$. ^d ΔU_{corr} , the correction to standard states, is the sum of items 81 to 85, 87 to 90, 93, and 94 in reference 18. ^f $\epsilon = 14808.2 \text{ J} \cdot \text{K}^{-1}$

m (substance) /g ^b	0.540534	0.337119	0.329953	0.366428	0.463607	0.415376	0.384793	0.439158	0.442936
m'(cotton) /g b	0.004403	0.004	0.003959	0.003931	0.00389	0.003644	0.00362	0.00382	0.004053
m"(polythen) /g ^b	0.296916	0.292229	0.29373	0.306265	0.283129	0.281928	0.28083	0.282947	0.283998
$\Delta T_c / K^c$	2.05377	1.61783	1.60716	1.72136	1.85038	1.74648	1.67976	1.79964	1.81143
$(\epsilon_{calor})\cdot(-\Delta T_c)/J$	-30405.7	-23951.8	-23793.8	-25484.4	-27394.6	-25856.3	-24868.5	-26643.3	-26817.8
$(\epsilon_{cont})\cdot(-\Delta T_c)/J$	-38.73	-29.53	-29.32	-31.63	-34.27	-32.17	-30.77	-33.28	-33.53
$\Delta U_{decomp} \ HNO_3 /J$	75.85	52.86	51.07	54.95	67.19	61.52	57.93	63.91	65.1
ΔU_{corr} /Jd	11.35	8.32	8.25	8.97	9.95	9.25	8.79	9.61	9.68
-m'·Δ _c u' /J	74.61	67.78	67.09	66.61	65.92	61.75	61.34	64.73	68.68
-m"·Δ _c u" /J	13765.32	13548.03	13617.62	14198.75	13126.14	13070.46	13019.56	13117.71	13166.43
$\Delta_c u^\circ$ (liq) /(J·g ⁻¹)	-30557.3	-30565.8	-30547	-30529.1	-30542.4	-30539.8	-30540.2	-30559.9	-30572.1
$\Delta_c u^\circ$ (liq) /(J·g ⁻¹)					30550.4 ± 4 .	7			
					195.0 ± 2.7				

· IMASSES obtained from apparent masses. $c \Delta T_c = T^f - T^i + \Delta T_{corr}; (\varepsilon_{cont}) \cdot (-\Delta T_c) = (\varepsilon_{cont}^i) \cdot (T^i - 298.15 \text{ K}) + (\varepsilon_{cont}^f) \cdot (298.15 \text{ K} - T^f + \Delta T_{corr})$. ^d ΔU_{corr} , the . الا الا ال **J.U4** IVIE a, III-(112U) correction to standard states, is the sum of items 81 to 85, 87 to 90, 93, and 94 in reference 13. $f \epsilon = 14804.82 \pm 0.9 \text{ J}\cdot\text{K}^{-1}$ - ردهی. ۲. p-ر یا ۱۱۱ کر. U 290.13 N, V(UUIIIU) -^a For the definition of the symbols see reterence 1.9, $1_{\rm h}$ –

TABLE S4. Conformational analysis of the [C₂MIM]⁺

Relative energy	0.00	Relative energy	0.00
at 298 15 K kI.mol ⁻¹		at 298.15 K, kJ-mol ⁻¹	2.50
RHF/6-31G(d)	0.190906	RB3LYP/6-31G(d,p)	0.179264
TCH Hartree		TCH, Hartree	0.179333
RHF/6-31G(d)	-342.3134241	RB3LYP/6-31G(d,p)	-344.5497091
Fo Hartree	-342.3121849	E ₀ , Hartree	-344.5488272
Dihedral $C_1N_5C_7C_8,^\circ$	± 105.0 0.0	Dihedral $C_1N_5C_7C_8,^\circ$	± 105.0 0.0
Conformer	conf1 conf2	Conformer	conf1 conf2

B [~] /					
Compounds	G3N	MP2			
Compounds	E ₀	H ₂₉₈	$\Delta f^{11}m \exp.gas$		
methane	-40.422100	-40.418284	-74.9 ± 0.4 [Pedley]		
ethane	-79.651199	-79.646714	-83.8 ± 0.3 [Pedley]		
ammonium	-56.470142	-56.466333	-45.94 ± 0.35 [Cox]		
methyl-imidazole	-265.097296	-265.090855	125.7		
1H-Imidazole	-225.867843	-225.863074	132.9 ± 0.6 [Jimenez]		
HCN	-93.298948	-93.295483	135.14 [Chase]		
propane	-118.885057	-118.879478	-104.70 [Pedley]		
ethene	-78.434778	-78.430777	52.50 [Pedley]		
$N(CH_3)_3$	-174.139755	-174.133223	-23.70[Pedley]		
$NH_2-(CH_2)_2-NH_2$	-190.194682	-190.188105	-17.00[Pedley]		
$[C_2MIM][N(CN)_2]$	-584.263083	-584.247538			

TABLE S5. Calculation G3MP2 Energy and Enthalpies at 298.15 K (in Hartree, ideal gas)

Pedley, J. P.; Naylor, R. D.; Kirby, S. P. *Thermochemical Data of OrganicCompounds*, 2nd Ed. Chapman and Hall: London. **1986**.

Cox, J.D.; Wagman, D.D.; Medvedev, V.A., **CODATA Key Values for Thermodynamics**, Hemisphere Publishing Corp., New York, 1984, 1

Chase, M.W., Jr., *NIST-JANAF Themochemical Tables, Fourth Edition*, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951.

Jimenez, P.; Roux, M.V.; Turrion, C., *Thermochemical properties of N-heterocyclic compounds. I. Enthalpies of combustion, vapour pressures and enthalpies of sublimation, and enthalpies of formation of pyrazole, imidazole, indazole, and benzimidazole, J. Chem. Thermodyn.*, 1987, 19, 985-992

TABLE	S6.	G3MP2	calculations	of	the	process	of	dissociation	of	the	ion	pairs	of
[C _n MIM]	[N(0	CN) ₂]											

	$[C_2MIM][N(CN)_2]$		[C ₄ MIM][N(CN) ₂]				
Components	Free Energy	Enthalpy	Components	Free Energy	Enthalpy		
	Hart	ree		Har	tree		
cation	-343.972545	-343.929305	cation	-422.447867	-265.090845		
anion	-240.215284	-240.183854	anion	-240.215284	-319.137933		
IL	-584.308419	-584.247537	IL	-662.780247	-584.247537		
$\Delta_{\rm r} {\rm G}^{\rm o},{\rm kJ/mol}$	316.	61	$\Delta_{\rm r} {\rm G}^{\rm o}$, kJ/mol	307	'.44		
$\Delta_{\rm r} {\rm H}^{\rm o}$, kJ/mol	352.	81	$\Delta_{\rm r} {\rm H}^{\rm o}$, kJ/mol	346.69			
$\Delta_r S^o$, J/mol·K	121.	42	$\Delta_{\rm r} { m S}^{\rm o}$, J/mol·K	131	.67		
ln K _p	-127.72		ln K _p	-124.02			
K _p	3.4 E	-56	K _p	1.4 E-54			