Acid-base thermochemistry of gaseous aliphatic α -aminoacids.

Guy Bouchoux^{*a}, Sihua Huang^b, Bhawani Singh Inda^c

 (a) Laboratoire des Mécanismes Réactionnels, UMR CNRS 7651, Département de Chimie, Ecole Polytechnique,F- 91128 Palaiseau cedex, France
 (b) Nanyang Technological University, School of Chemical and Biomedical Engineering, Nanyang Crescent, Singapore 637658.
 (c) Indian Institute of Technology, Department of Chemistry, Kanpur, India.

Supplementary Informations

Tables S1-S6: Total (Hartree) and relative (kJ/mol) H°_{0} , H°_{298} and G°_{298} calculated at the B3LYP/6-31G(d)// B3LYP/6-31G(d) and G3MP2B3 levels for the investigated conformers of **AAA**, **AAAH**⁺ and **[AAA-H]**⁻ (**AAA**= Gly, Ala, Val, Leu, Ile, Pro).

Figures S1-S6: B3LYP/6-31G(d) optimized geometries of the most stable conformers of **AAA**, **AAAH**⁺ and **[AAA-H]**⁻ (**AAA**= Gly, Ala, Val, Leu, Ile, Pro).

Species	$\begin{array}{c} \text{B3LYP/6-31G(d)} \\ \text{H}^{\circ}_{0} \end{array}$	G3MP2B3 H_0^0	G3MP2B3 H ⁰ ₂₉₈	G3MP2B3 G ⁰ ₂₉₈
GlyI	0	0	0	0
GlyII	2.8	4.9	4.0	6.7
GlyIII	6.9	7.2	7.2	6.2
GlyIV	8.0	4.7	4.5	5.5
GlyHI	0	0	0	0
GlyHII	21.3	18.5	19.4	17.1
GlyI-H	0	0	0	0

a) Total B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for the reference species **GlyI** are -284. , -284.066290 , -284.059608 and -284.09551 Hartree, respectively.

b) Total B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for the reference species **GlyHI** are -284. , -284.401955 , -284.395330 and -284.431134 Hartree, respectively.

c) Total B3LYP/6-31G(d) H°₀, G3MP2B3 enthalpy H°₀, H°₂₉₈ and free energy G°₂₉₈ for the reference species **GlyI-H** are -283.850794, -283.521668, -283.515415 and -283.550125 Hartree, respectively.

Species	B3LYP/6-31G(d) H°_{0}	G3MP2B3 H_0^0	G3MP2B3 H ⁰ ₂₉₈	G3MP2B3 G ⁰ ₂₉₈
AlaI	0	0	0	0
AlaII _A	0.4	2.7	1.9	4.3
AlaII _B	-1.3	3.8	2.8	5.8
AlaIII	6.1	6.3	6.2	4.5
AlaIV _A	8.1	4.8	4.6	5.7
AlaIV _B	6.7	4.4	4.2	5.1
AlaHI	0	0	0	0
AlaHII	17.4	15.8	16.2	15.1
Alaf-H _A	0	0	0	0
AlaI-H _B	-1.9	0.3	0.1	0.6

Table S2. Relative energies (kJ/mol) calculated for neutral, protonated and deprotonated alanine conformers^{a,b,c}.

a) B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for reference species AlaI are - 323.739642, -323.306690, -323.298659 and -323.337793 in Hartree, respectively.

b) B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for reference species AlaHI are - 324.103576, -323.647935, -323.639932 and -323.679014 in Hartree, respectively.

c) B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for reference species AlaI-H_A are -323.168506, -322.763104, -322.755457 and -322.793612 in Hartree, respectively.

Species ^c	B3LYP/6-31G(d)	G3MP2B3 H_0^0	G3MP2B3 H ⁰ ₂₉₈	G3MP2B3 G ⁰ ₂₉₈
Val-Ig+	2.4	2.8	2.7	2.7
Val-Ia	4.1	4.8	4.5	5.1
Val-Ig-	0	0	0	0
Val-II _A g+	5.5	7.9	7.2	6.7
Val-II _B g+	4.1	12.2	11.1	13.6
Val-II _A a	1.6	4.5	3.5	6.1
Val-II _B a	1.7	8.5	7.4	10.4
Val-II _A g-	1.2	3.5	3.0	3.1
Val-II _B g-	2.3	3.0	1.8	4.7
Val-IIIg+	6.2	4.2	4.4	2.8
Val-IIIa	8.8	9.0	8.8	9.0
Val-IIIg-	6.2	6.4	6.4	5.5
Val-IV _B g- ^d	7.0	5.2	5.1	5.6
Val-IV _B g+ ^d	8.6	7.3	7.1	7.0
Val-IV _B a	8.5	4.6	7.4	8.1
Val-IV _A a	11.3	8.6	8.4	8.7
Val-HIg+	5.6	6.7	6.5	7.1
Val-HIa	4.2	5.0	4.9	5.5
Val-HIg-	0	0	0	0
Val-I-H _A g+	2.2	6.4	6.2	6.8
Val-I-H _B g+	6.1	13.7	13.3	13.5
Val-I-H _A a	2.5	4.0	3.9	4.3
Val-I-H _B a	2.5	8.0	7.4	9.5
Val-I-H _A g-	0	0	0	0

Supplementary Table S3. Relative energies (kJ/mol) calculated for neutral, protonated and deprotonated valine conformers^{a,b,c}.

a) Total B3LYP/6-31G(d) H°₀, G3MP2B3 enthalpy H⁰₀, H⁰₂₉₈ and free energy G⁰₂₉₈ for the reference species Val-Ig- are -402.366851, -401.782527, -401.771807 and -401.817082 Hartree, respectively. b) B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for reference species **Val-IHg-** are

5.5

Val-I-H_Bg-

3.6

5.6

5.5

-402.7350683, -402.128723, -402.117943 and -402.163613 in Hartree, respectively.

c) Total B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for the reference species Val-I-H_Ag- are -401.799526, -401.242019, -401.231698 and -401.276263 Hartree, respectively. d) Tentatives of geometry optimization of conformers Val-IV_Ag- and Val-IV_Ag+ lead to the corresponding conformers Val-I.

Species	B3LYP/6-31G(d) H° ₀	G3MP2B3 H_0^0	G3MP2B3 H ⁰ ₂₉₈	G3MP2B3 G ⁰ ₂₉₈
LeuIg+g+	0	0	0	0
LeuIg+a	5.3	7.1	7.2	6.1
LeuIg+g-	8.0	8.6	8.4	9.3
LeuIag+	8.7	8.1	7.8	9.0
LeuIaa	3.6	2.0	1.8	3.2
Leulag-	11.9			
LeuIg-g+	9.6			
LeuIg-a	6.5	5.1	4.8	6.5
LeuIg-g-	17.1			
Leu∐₄g+g+	leuII _P g+g+			
LeuII _b g+g+	-0.7	4.3	3.2	6.3
LeuII₄g+a	leuII _B g+a			
LeuII _B g+a	4.3	10.8	9.9	11.5
LeuII _A g+g-	leuII _B g+g-			
LeuII _B g+g-	7.1	13.2	12.1	14.6
LeuII _A ag+	9.5			
LeuII _B ag+	LeuII _B aa			
LeuII _A aa	1.1	2.9	1.9	5.3
LeuII _B aa	2.5	8.5	7.6	9.2
LeuII _A ag-	11.4			
LeuII _B ag-	15.5			
LeuII _A g-g+	7.6			
LeuII _B g-g+	6.8	9.2	7.9	12.1
LeuII _A g-a	LeuII _B g-a			
LeuII _B g-a	3.5	6.5	5.0	10.7
LeuII _A g-g-	14.7			
LeuII _B g-g-	15.2			
LeuIIIg+g+	6.1	5.7	5.7	4.3
LeuIIIg+a	11.0			
LeuIIIg+g-	13.6			
LeuIIIag+	11.5			
LeuIIIaa	6.9			
LeuIIIag-	14.6			
LeuIIIg-g+	15.9			
LeuIIIg-a	11.1			
LeuIIIg-g-	22.1			

This journal is (c) T Aliphatic aminoacio	he Owner Societie ls	s 2010 5	-		Supplementary
LeuIV _B g+g+ ^d	8.5	5.6	5.4	6.3	
LeuIV _B g+a ^d	15.5				
LeuIV _B aa ^d	8.8	5.5	5.2	7.1	
LeuHIg+g+	0	0	0	0	
LeuHIg+a	2.5	2.1	1.7	3.4	
LeuHIg+g-	4.0	3.9	3.3	5.7	
LeuHIag+	14.1				
LeuHIaa	5.0	4.7	4.6	5.5	
LeuHIag-	16.8				
LeuHIg-g+	3.6	2.4	1.7	5.1	
LeuHIg-a	4.5	3.9	3.3	6.7	
LeuHIg-g-	10.7				
LeuI-H _A g+g+	4.1	1.7	2.4	-0.9	
LeuI-H _B g+g+	4.5	3.3	3.8	0.6	
LeuI-H _A aa	0	0	0	0	
LeuI-H _B aa	3.2	4.2	4.6	2.9	
LeuI-H _A g+a	6.1	8.1	8.7	5.7	
LeuI-H _B g+a	3.4	7.3	7.3	6.6	
LeuI-H _A g-a	3.7	4.3	4.3	4.1	
LeuI-H _B g-a	6.8	5.7	5.6	6.1	
LeuI-H _A g-g+	8.4	5.4	5.5	5.1	
LeuI-H _B g-g+	7.9	6.5	6.4	6.8	

Supplementary Material (ESI) for Physical Chemistry Chemical Physics

a) Total B3LYP/6-31G(d) H_{0}° , G3MP2B3 enthalpy H_{0}^{0} , H_{298}^{0} and free energy G_{298}^{0} for reference species **LeuIg+g+** are: -441.680569, -441.018820, -441.006717 and -441.056100 Hartree, respectively. b) Total B3LYP/6-31G(d) H_{0}° , G3MP2B3 enthalpy H_{0}^{0} , H_{298}^{0} and free energy G_{298}^{0} for reference species **LeuH1g+g+** are: -442.04913328, -441.365309, -441.353185 and -441.402486 Hartree, respectively. c) Total B3LYP/6-31G(d) H_{0}° , G3MP2B3 enthalpy H_{0}^{0} , H_{298}^{0} and free energy G_{298}^{0} for reference species **LeuH1g+g+** are: -442.04913328, -441.365309, -441.353185 and -441.402486 Hartree, respectively. c) Total B3LYP/6-31G(d) H_{0}° , G3MP2B3 enthalpy H_{0}^{0} , H_{298}^{0} and free energy G_{298}^{0} for reference species **LeuI-HAaa** are: -441.113766, -440.478066, -440.466561 and -440.513862 Hartree, respectively. d) Tentatives of geometry optimization of conformers **LeuIV**_A**xx** lead to the corresponding conformers **LeuIxx** (only xx=aa, g+g+ and g+a were considered since the relative energies of the other conformers are expected to be higher than 10 kJ/mol in view of the relative energies of the corresponding **LeuIxx** C-N rotamers).

comorners .				
Species	B3LYP/6-31G(d)	G3MP2B3 H_0^0	G3MP2B3 H ⁰ ₂₉₈	G3MP2B3 G ⁰ ₂₉₈
	H° ₀			
IleIg+g+	7.0	4.3	4.3	4.6
IleIg+a	4.5	2.7	2.5	2.9
IleIg+g-	11.0			
IleIag+	15.7			
IleIaa	6.3	4.8	4.4	5.6

Table S5. Relative energies (kJ/mol) calculated for neutral, protonated and deprotonated isoleucine conformers^{a,b}.

Aliphatic aminoacid	he Owner Societies 2010	6		Supplementary
IleIag-	5.5	3.4	2.8	5.2
IleIg-g+	11.6			
IleIg-a	2.4	0	0	0
IleIg-g-	5.8	3.6	3.3	4.7
IleII _A g+g+	10.1			
IleII _B g+g+	9.2			
IleII _A g+a	8.6			
IleII _B g+a	7.6	13.9	12.5	15.8
IleII _A g+g-	15.5			
IleII _B g+g-	14.2			
IleII _A ag+	14.1			
IleII _B ag+	15.7			
IleII _A aa	3.6	4.6	3.4	6.9
IleII _B aa	3.2	8.1	6.8	10.6
IleII _A ag-	2.3	3.4	2.0	6.3
IleII _B ag-	3.5	7.4	6.2	9.0
IleII _A g-g+	IleII _B g-g+			
IleII _B g-g+	8.9			
IleII _A g-a	IleII _B g-a			
IleII _B g-a	0	2.2	1.2	4.0
IleII _A g-g-	IleII _B g-g-			
IleII _B g-g-	2.2	3.7	2.2	7.4
IleIIIg+g+	7.0	6.3	6.2	5.2
IleIIIg+a	8.2	4.3	4.3	3.5
IleIIIg+g-	11.0			
IleIIIag+	15.7			
IleIIIaa	11.2			
IleIIIag-	9.6			
IleIIIg-g+	18.3			
IleIIIg-a	8.4	6.0	5.9	5.4
IleIIIg-g-	10.0			
Ile-IV _A g-a ^d	Ile-Ig-a			
Ile-IV _B g-a	9.5	5.7	5.5	6.2
Ile-IV _A g+a	20.8	17.6	17.0	17.1
Ile-IV _B g+a	11.7	7.6	7.7	6.7
Ile-IV _A ag-	14.3	8.4	8.3	7.4
Ile-IV _B ag-	10.7	7.1	6.6	8.9

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010 Aliphatic aminoacids

This journal is (c) The	e Owner Societies 201	0		
Aliphatic aminoacids		7		Supplementary
IleHIg+g+	7.7	8.5	8.2	8.2
lleHIg+a	6.8	7.5	7.5	7.3
IleHIg+g-	12.4			
IleHIg-g+	4.8	4.4	4.0	5.4
IleHIg-a	0.0	0	0	0
IleHIg-g-	3.1	3.8	3.1	5.5
IleHIag+	17.6			
IleHIaa	4.7	5.8	5.8	5.7
IleHIag-	3.6	3.9	3.9	4.0
lleI-H _A g-a	0	0	0	0
IleI-H _B g-a	6.3	5.2	5.2	4.9
IleI-H _A g+a	2.4	6.0	6.1	5.3
IleI-HB _A g+a	7.5	14.7	14.7	13.0
IleI-H _A a g-	-2.5	0.8	0.2	2.9
IleI-H _B a g-	2.5	5.3	4.7	7.3

Supplementary Material (ESI) for Physical Chemistry Chemical Physics

a) Total B3LYP/6-31G(d) $H_{0,0}^{\circ}$ G3MP2B3 enthalpy $H_{0,0}^{0}$ H_{298}^{0} and free energy G_{298}^{0} for reference species **IleIg-a** are: -441. 679798 (for **IleIIg-a**), -441.018097, -441.005933 and -441.055026 Hartree, respectively. b) Total B3LYP/6-31G(d) $H_{0,0}^{\circ}$ G3MP2B3 enthalpy $H_{0,0}^{0}$ H_{298}^{0} and free energy G_{298}^{0} for reference species **IleHIg-a** are: -442.048557, -441.365870, -441.353732 and -441.402613 Hartree, respectively. c) Total B3LYP/6-31G(d) $H_{0,0}^{\circ}$ G3MP2B3 enthalpy $H_{0,0}^{0}$ H_{298}^{0} and free energy G_{298}^{0} for reference species **IleI-H1g-a** are: -441.112350, -440.477772, -440.466128 and -440.513909 Hartree, respectively. d) converges on the IleIBxxx conformer.

es (KJ/IIIOI) calculated I	or neutral, protonated	and deprotonated pro	line comorners
B3LYP/6-31G(d)	G3MP2B3 H_0^0	G3MP2B3 H ⁰ ₂₉₈	G3MP2B3
H° ₀			G^{0}_{298}
0	0	0	0
2.7	3.0	3.2	1.6
6.4	5.3	6.1	3.5
6.2	5.3	6.3	2.4
0	0	0	0
2.0	2.6	2.9	2.0
0	0	0	0
4.9	4.2	4.4	3.4
30.0	23.7	24.4	22.4
	$ \begin{array}{r} \frac{33(X5)/1101}{100} \\ $	$\begin{array}{c ccccc} \hline 33(KS/IIIO) \ calculated for fictural, problated \\ \hline B3LYP/6-31G(d) & G3MP2B3 \ H^0_0 \\ \hline H^0_0 & 0 \\ \hline 2.7 & 3.0 \\ 6.4 & 5.3 \\ 6.2 & 5.3 \\ \hline 0 & 0 \\ 2.0 & 2.6 \\ \hline 0 & 0 \\ 4.9 & 4.2 \\ 30.0 & 23.7 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S6. Relative energies (kJ/mol) calculated for neutral, protonated and deprotonated proline conformers^{a,b}.

a) Total B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for reference species **Prollendo** are: -401. 008800, -400.581392, -400.573053 and -400.613686 Hartree, respectively. b) Total B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for reference species **ProHlendo** are: -401.371706, -400.937781, -400.929238 and -400.970206 Hartree, respectively. c) Total B3LYP/6-31G(d) H°_{0} , G3MP2B3 enthalpy H^{0}_{0} , H^{0}_{298} and free energy G^{0}_{298} for reference species **Proll**-

 $H^{4}E$ are: -400.585949, -400.039890, -400.031691 and -400.072029 Hartree, respectively.

GlyI

GlyII

GlyIII

GlyIV

Gly-H

Figure S1. Most stable conformers of neutral, protonated and deprotonated glycine.

AlaII_A

AlaIII

AlaIV_A

AlaIV_B

AlaHI

Ala-H_A

Ala-H_B

Figure S2. Most stable conformers of neutral, protonated and deprotonated alanine.

Vallg-

ValIg+

ValII_Ag-

ValII_Bg-

Figure S3. Most stable conformers of neutral, protonated and deprotonated valine.

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010 Aliphatic aminoacids 13

HH-

LeuIg+g+

LeuIaa

LeuII_Bg+g+

LeuII_Aaa

LeuIIIg+g+

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010 Aliphatic aminoacids 14

Supplementary

LeuHIg+g+

Leu-H_Ag+g+

Leu-H_Bg+g+

Leu-H_Aaa

Figure S4. Mosts stable conformers of neutral, protonated and deprotonated leucine.

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010 Aliphatic aminoacids 15

X

IleIg-a

IleII_Bg-a

IleHIg-a

IleIg+a

IleIIIg+a

IleHIag-

Ile-H_Ag-a

Ile-H_Aag-

Figure S5. Most stable conformers of neutral, protonated and deprotonated isoleucine.

ProIV⁴E

ProIV⁵E

ProH⁴E

ProHE₄

Supplementary Material (ESI) for Physical Chemistry Chemical PhysicsThis journal is (c) The Owner Societies 2010Aliphatic aminoacids18Supplementary

Pro-H⁴E

Pro-H⁵E

Figure S6. Most stable conformations of neutral, protonated and deprotonated proline.