
Supporting Information

The purpose of this material is to put the random walk on parabolas process

described in section 2 of the main paper on rigorous mathematical footing.

It has been relegated here so that the physical concepts discussed in the

paper are not obscured by mathematical details. Throughout the following,

the stochastic process {Aq}q∈R+ is denoted by A, and At is the value of

A at time t. Assume a complete filtered probability space (Ω,F ,Ft, P )

and that the horizontal and vertical coordinates of the incoming atom are

Ft-adapted, continuous path stochastic processes, which are denoted as X

and Y , respectively. Furthermore, we assume that the paths of X and Y

are sufficiently smooth for the velocity processes {dXt/dt} and {dYt/dt} to

exist, are of finite variation on compacts, and that the initial conditions X0

and Y0 are given. All of these are obvious from a physical point-of-view. For

mathematical convenience, we suppose that the atom moves in the bounded

hemisphere H = {(x, y) ∈ R2 :
√
x2 + y2 ≤

√
X2

0 + Y 2
0 }.

Basic definitions

Definition 1. Let N0 be a given countable finite collection of N(0,
√
kBT/πγ)

and take the subset B = {n : n ∈ N0, 0 ≤ n ≤ Y0}. The collection F of all

functions from R to R with representation

f(x) = b
(
1− (x− a)2/h2

)
(1)

where a ∈ C, C =
[
−
√
X2

0 + Y 2
0 − h,

√
X2

0 + Y 2
0 + h

]
, and b ∈ B and h

a fixed positive real constant, is the local mode collection.

Each of the functions in the local mode collection corresponds to a possible

local mode that the incoming particle may pass over during its motion in H.

By taking the set N0 as given, we can be sure that the amplitudes of the local

modes (B) are not correlated with the motion of the particle. Countability of

this collection ensures its existence. Its finiteness poses no physical limitation

as we can make it as large as we wish.
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Using f(x;α, β) as shorthand for the function f(x) = β (1− (x− α)2/k2)

in F , it follows from the definition that

C ×B = {(a, b) : f(x; a, b) ∈ F for all fixed x ∈ R} , (2)

which means that each element of C×B corresponds to a unique element

of F . The heuristic construction in section 2 of the main paper described

a fictional random walker which identified which local mode was directly

beneath the incoming atom at time t. By (2), we can assign C × B as the

state space of that walker. Letting Zt denote its trajectory, we can identify

the random walk on parabolas as the process {f(Xt;Zt)}.

Definition 2. The process defined by the random variables

Qt = f(Xt;Zt) (3)

where f ∈ F and Z 7→ C × B is a pure jump process is a random walk

on parabolas.

Each local mode in the local mode collection corresponds to a state of

the process Z, and the sojourn periods of Z correspond to the duration that

the local mode spends beneath the incoming atom as the atom passes over

the surface. This provides an unambiguous connection between the value of

Z and a local mode in F , as is more precise than the notation ‘fZt(Xt)’ used

in section 2.

Isotropy and continuity conditions

Before going on to define the process Z, it will be useful to make some

comments about the isotropy and continuity conditions. These conditions

must be satisfied when Z makes a jump to another region of C × B. In

the heuristic construction of section 2, we defined A+
ij as the event where

aj ≥ Xt ≥ ai when the atom is travelling from left-to-right across the surface,

dXt/dt > 0. We required either this condition or A−ij to be fulfilled when

the random walk Z made a transition from local mode i to local mode j
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at time t. Since the local mode collection F is uncountable in the present

construction, it is not so meaningful to speak of ‘local mode i’ or ‘local mode

j’. However, we can still describe the situation by considering the value of

the C component of the process Z at transition time U . If the value of the C

component of Z at time U− = limu→U,u<U u is c1, then we require the event

A0(c1) =
{
XU− < c1 ∩ ẊU− < 0

}
∪
{
XU− > c1 ∩ ẊU− > 0

}
, (4)

where ẊU− = dXt/dt |t=U− , to occur for a transition to occur at time U .

To formulate the second part of the isotropy condition, we suppose that at

the transition time U the second component of the process Z takes on the

value c2. Following the construction given in section 2, it must be that the

event

A1(c2) =
{
XU > c2 ∩ ẊU < 0

}
∪
{
XU < c2 ∩ ẊU > 0

}
(5)

occurs with the transition. Events A0(c1) and A1(c2) collectively define

the isotropy condition, although not in terms of their intersection. For rea-

sons that will become clear in the next section, it is helpful to speak of them

separately. The continuity condition is obviously {QU− = QU}, and so the

condition that must occur with probability 1 at the transition time U is

A(c2, b) = A1(c2) ∩ {QU− = QU}, (6)

where b is the value of the amplitude component b ∈ B of Z after com-

pleting the transition.

It is worth pointing out that we can think of the isotropy conditions

A0(c1) and A1(c2) in terms of a symmetry operation on the sample space.

To see this, note that events of the form {G ∩HC} ∪ {H ∩GC} are usually

written as symmetric differences,

G4H = {G ∩HC} ∪ {H ∩GC}.

While the events {XU− < c1} and {XU− > c1}, and {ẊU− < 0} and
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{ẊU− > 0} are not quite complementary, it is still very tempting to write

(4) as a symmetric difference,

A0(c1) = VU−4CU− (7)

where VU− = {ẊU− < 0} and CU− = {XU− < c1}. Similarly, A1(c2) is

approximately in the form {GC ∩HC}∪ {G∩H}. By means of de Morgan’s

laws, it can be shown that such an event can be written as the compliment of

a symmetric difference, namely {G4H}C . We can therefore rewrite A1(c2)

as

A1(c2) = {VU4CU}C . (8)

We therefore have that A1(c2), which occurs at time U , is the complement

to events occurring at time U−. In this sense, the region of the sample space

available at time U is an inversion of the region available at time U−. While

the association of isotropy with inversion symmetry is indeed very nice, it

needs to be regarded with some caution because the representation of A0(c1)

and A1(c2) as symmetric differences and their compliments is not exact.

The pure-jump process Z

The construction will be complete once we define the process Z. This needs to

be done in several steps, and the isotropy and continuity condition described

above also needs to be considered. It is required that Z makes a jump when

either the incoming atom goes on to see a new local mode beneath itself

or when the local mode that the atom is currently over begins to take on

negative values. We therefore consider two sets of random times T1, T2, . . .

and S1, S2, . . ., and let Ui = Ti ∧ Si. Now, let J1 = T1, J2 = T2 − U1, . . . be

exponentially distributed iid random variables, that is

P (Ji < j) = 1− e−λj (9)

for some constant λ > 0. The intervals Ji are the waiting periods between

new local modes appearing beneath the incoming atom. The connection
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between the parameter λ in (9) and ρ of equation 8 of the main text will be

explained shortly. Next, define

S1 = inf (0 < t ≤ T1 : Qt < 0)

S2 = inf (U1 < t ≤ T2 : Qt < 0)

and so on. If for a particular Si such a time does not exist, set it to Ti.

The times Si correspond to times at which the surface profile of the liquid

surface begins to take on negative values. For Ui < t ≤ Ui+1, Z is defined as

Zt =

{
Wi+1 t = Ui+1 and A0(c1) occurs

ZUi
otherwise

(10)

where Wi+1 is a random variable with probability distribution that incor-

porates the condition A(c2, b), as will be described shortly. Note that A0(c1)

will always occur if Ui+1 = Si+1. Thus, the process Z jumps when the particle

goes on to see a new local mode beneath itself (an event which occurs after

an exponential waiting time and when the isotropy condition is satisfied),

or when the local mode begins to take on negative values, whichever occurs

first.

To define the probability distribution of the random variable Wi+1 in (10),

recall that there in the random local mode model there is no preference to

make any particular transition, as long as the transition satisfies the condition

A(c2, b). We therefore have

P (Wi+1 ∈ (dc, b)) =

{
constant if A(c, b) occurs

0 otherwise
(11)

where dc is the smallest open interval centered on point c in C.1 The

constant in (11) can, in principle, be evaluated by ensuring that the distri-

bution is normalised over C × B. In this work, we assume that this is the

case. Note that the transition probability (11) is defined for a region of C

and an individual point in B, rather than for individual local modes like in

1The smallest open interval centered on point c is (c− ε, c+ ε), ε→ 0.
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the transition probability in equation 8 of the main text.

From (11) alone, it might not be obvious that the measure P (W ∈ dw)

is mathematically well-defined. This is clarified by the following theorem.

Theorem 1. The probability measure P (W ∈ (dc, b)) is well-defined.

Proof. Let E = {(c, b) ∈ C ×B : A(c, b) is satisfied}. E is the collection of

all regions where W may lie with nonzero probability. For P (W ∈ (dc, b))

to be well-defined, it is sufficient for the collection E to correspond to a

countable union of disjoint regions in C×B. We can then define P (W ∈ EC)

as 1− P (W ∈ E) = 0. By the continuity condition in A((c, b)), we have

f(XUi+1
;ZUi

) = f(XUi+1
;ZUi+1

) = b
(
1− (XUi+1

− c)2/h2
)
,

and hence

c = XUi+1
− h
√

1− f(XUi+1
;ZUi

)/b, (12)

which implies b ∈
{
β : β ∈ B, β ≥ f(XUi+1

;ZUi
)
}

. By Definition 1, this

collection is countable, and by (2) each element corresponds to a unique

point c ∈ C. Hence, E corresponds to a countable union of disjoint regions

(dc, b) ∈ C ×B.

Going further from Theorem 1 and constructing the distribution of Z

(and hence of Q) is far from trivial, because the random variables Wi depend

upon XU1 , XU2 , . . .. Since we will only be interested in simulating paths of

the random walk on parabolas, the above construction is satisfactory.

The final remark is that the parameter of the random walk process Z is

the Poisson parameter λ, and that the parameter ρ which featured in the

main text is seemingly absent. The latter is used as it is more natural from

the point of view of numerical integration of the equations of motion. It

is straightforward to show that the pictorial construction closely approxi-

mates the proceeding mathematical construction. Suppose that the interval

[Ui, Ui+1] is partitioned into smaller intervals of length l. If there is a proba-

bility ρ during each interval of the walk making a jump, then the probability

6

Supplementary Material (ESI) for PCCP
This journal is © the Owner Societies 2010



that the interval has the length of at least L intervals is (1− ρ)L, and there-

fore the probability that the jump will occur before time j = lL since the

start of the interval is P (Ji+1 < j) = 1 − (1 − ρ)L. Let L → ∞ and ρ → 0,

while Lρ is kept at a constant value λj. In this limit

P (Ji+1 < j) = 1− lim
L→∞

(1− λj/L)L

= 1− e−λj,

which is the same as (9). Hence, the transition probability in the pictorial

construction of section 1 holds well for small time steps and small ρ. As well

as its advantage in numerical algorithms, the approximate approach involving

ρ will be more lucid than the Poisson parameter in physically-motivated

discussions of our work.

Integration with a random walk on parabolas

In order to integrate the equations of motion in the main paper, we need

a clear path-wise interpretation of the integral
∫ t
0
g(Qt)dQt, where g is a

continuous function. In general, special precautions need to be taken when

computing integrals with respect to stochastic processes, and it is not usually

the case that the results are the same as those of a classical Riemann-Stieltjes

integral from ordinary calculus. Such cases arise when the process has paths

of infinite variation, as well as when the paths are discontinuous. For details,

see the reference provided at the end of this section. The paths of the random

walk on parabolas process are clearly continuous, so the latter is not an issue.

To see that they are of finite variation on compacts, recall that the variation

of Qt on path ω on the interval [ta, tb] is

V[ta,tb](ω) =

∫ Qtb

Qta

|dQt(ω)| . (13)

Theorem 2. The random walk on parabolas process has paths of finite vari-

ation on compacts.
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Proof. It will be sufficient to prove the claim on the finite interval [ui, ui+1] ⊆
[Ui, Ui+1], since an arbitrary time interval is covered by a finite union of such

intervals. On this interval,

Qt = f(Xt;ZUi
)

by path continuity, and hence dQt = (df(Xt;ZUi
)/dXt) dXt. Writing the

components of ZUi
as (α, β), (1) gives

df(Xt;ZUi
)/dXt = −2β(Xt − α)/h2 ≤ 2β/h

The inequality follows from Definition 2 (|Xt − α| ≤ h, or else f < 0 and

f /∈ F ). This gives

V[Ui,Ui+1](ω) =

∫ Ui+1

QUi

|dQt(ω)| ≤ (2β/h)

∫ XUi+1

XUi

|dXt(ω)| .

Let β → maxb∈B b. Since all b ∈ B are normal random variables, this

quantity will be finite for all paths. The finiteness the the right hand side

follows from the assumptions that Xt varies smoothly and continuously in

C.

The crucial consequence of Theorem 2 is that we can integrate the equa-

tions of motion with the familiar methods of classical calculus. See the

reference below for details.
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