Supporting Figures for Section 4

Supporting Figure 1

Angular distributions for a 29 kJ mol⁻¹ neon atom striking a 290 K squalane surface computed with A. $\rho = 0.006$, B. $\rho = 0.009$, C. $\rho = 0.012$, and D. $\rho = 0.016$, with all other parameters held at the values given in Table 1. The histograms A, B, and D were plotted from 2000 solutions to the equations of motion. Figure C is the same as Fig. 5 of the main paper.

Supporting Figure 2

Angular distributions for a 29 kJ mol⁻¹ neon atom striking a 290 K squalane surface computed with A. h = 0.6d, B. h = 0.7d, C. h = 0.75d, D. h = 0.8dand E. h = 0.85d, where d is the diameter of a squalane surface molecule, with all other parameters held at the values given in Table 1 and $\rho = 0.012$. The histograms A, B, and D were plotted from 2000 solutions to the equations of motion. Figure C is the same as Fig. 5 of the main paper.

Supporting Figure 3

Angular distributions for a 29 kJ mol⁻¹ neon atom striking a 290 K squalane surface computed with A. γ = half the squalane surface tension, B. γ = the squalane surface tension, and C. γ = twice the squalane surface tension, with ρ = 0.012 and all other parameters held at the values given in Table 1. The histograms A, and C were plotted from 2000 solutions to the equations of motion. Figure B is the same as Fig. 5 of the main paper.

