Supporting Information

Determination of Relative Tensor Orientations by 7-encoded Chemical Shift Anisotropy/Heteronuclear Dipolar Coupling 3D NMR Spectroscopy in Biological Solids

Guangjin Hou,^{*a,b*} Sivakumar Paramasivam,^{*a*} In-Ja L. Byeon,^{*b,c*} Angela M. Gronenborn,^{*b,c*} Tatyana Polenova*^{*a,b*}

^aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States;

^bPittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States;

^cDepartment of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United

States

Figure S1. The recoupled ¹H-¹⁵N dipolar and ¹⁵N CSA lineshapes for different crystallite orientations in the laboratory frame produced by γ -encoded R18₁⁷ and R14₂^{3/5}. Two-spin system (¹H, ¹⁵N) is used in all simulations. The recoupled powder patterns are illstrated in the bottom figure; the powder averaged were generated using 986 ZCW crystallite orientations (α , β). As shown in the Figure, there is only one splitting corresponding to each crystallite and it is independent of the number of gamma angles. This demonstrates that R18₁⁷ and R14₂^{3/5} recoupling techniques are γ -encoded.

Figure S2. The simulated ¹H-¹⁵N dipolar and ¹⁵N CSA correlation spectra by the combined R18₁⁷/R14₂³ symmetry scheme for different crystallite orientations. The same DIP/CSA relative orientation was used for all simulations. The crystallite orientations expressed in terms of the Euler angles are (a) $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$; (b) $\alpha = 0^{\circ}$, $\beta = 30^{\circ}$; (c) $\alpha = 0^{\circ}$, $\beta = 60^{\circ}$; (d) $\alpha = 0^{\circ}$, $\beta = 90^{\circ}$; (e) $\alpha = 30^{\circ}$, $\beta = 0^{\circ}$; (f) $\alpha = 30^{\circ}$, $\beta = 30^{\circ}$; (g) $\alpha = 30^{\circ}$, $\beta = 60^{\circ}$; (h) $\alpha = 30^{\circ}$, $\beta = 90^{\circ}$. It can be seen that the combined R-type symmetry scheme shows high sensitivity to the molecular orientation. Only one splitting can be found along DIP and CSA dimension for each crystallite orientation.

Figure S3. The simulated ¹H-¹⁵N dipolar and ¹⁵N CSA correlation spectra by the combined R18₁⁷/R14₂⁵ symmetry scheme for different crystallite orientations. The same DIP/CSA relative orientation was used for all simulations. The crystallite orientations expressed in terms of the Euler angles are (a) $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$; (b) $\alpha = 0^{\circ}$, $\beta = 30^{\circ}$; (c) $\alpha = 0^{\circ}$, $\beta = 60^{\circ}$; (d) $\alpha = 0^{\circ}$, $\beta = 90^{\circ}$; (e) $\alpha = 30^{\circ}$, $\beta = 0^{\circ}$; (f) $\alpha = 30^{\circ}$, $\beta = 30^{\circ}$; (g) $\alpha = 30^{\circ}$, $\beta = 60^{\circ}$; (h) $\alpha = 30^{\circ}$, $\beta = 90^{\circ}$. As with the R18₁⁷/R14₂³ symmetry scheme in Figure S2, the combined R18₁⁷/R14₂⁵ symmetry scheme also shows high sensitivity to the molecular orientation.

Figure S4. The simulated ¹H-¹⁵N dipolar and ¹⁵N CSA correlation spectra by the combined γ encoded R18₁⁷ / non γ encoded ROCSA¹ scheme for different crystallite orientations. The same DIP/CSA relative orientation was used for all the simulations. The crystallite orientations expressed in terms of the Euler angles are (a) $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$; (b) $\alpha = 0^{\circ}$, $\beta = 30^{\circ}$; (c) $\alpha = 0^{\circ}$, $\beta = 60^{\circ}$; (d) $\alpha = 0^{\circ}$, $\beta = 90^{\circ}$; (e) $\alpha = 30^{\circ}$, $\beta = 0^{\circ}$; (f) $\alpha = 30^{\circ}$, $\beta = 30^{\circ}$; (g) $\alpha = 30^{\circ}$, $\beta = 60^{\circ}$; (h) $\alpha = 30^{\circ}$, $\beta = 90^{\circ}$. Compared with the R-symmetry based schemes, the non γ encoded ROCSA sequence results in broad powder pattern along the CSA dimension for each orientation, but the sensitivity is much lower than in the R-symmetry schemes illustrated in figures S2 and S3. It is therefore necessary to employ γ -encoded recoupling scheme for determination of the CSA tensor orientation in the molecular frame.

Figure S5. The simulated ¹H-¹⁵N dipolar and ¹⁵N CSA correlation spectra by the combined γ encoded R18₁⁷/R14₂⁵ scheme for different relative tensor orientations. In a)-d), the Euler angle $\beta_{\rm NH}$ (the angle between the N-H vector and the CSA δ_{zz} principal value) was 20°, and the Euler angle $\alpha_{\rm NH}$ (the angle between C α -N-H peptide plane and the CSA δ_{xx} principal value) was 0°, 30°, 60°, and 90°, respectively. In e)-h), the Euler angle $\alpha_{\rm NH}$ was 20°, and $\beta_{\rm NH}$ was 0°, 30°, 60°, and 90°, respectively. This demonstrates that both Euler angles $\alpha_{\rm NH}$ and $\beta_{\rm NH}$ affect the 2D correlation spectrum patterns, but the effect of $\alpha_{\rm NH}$ on the lineshape is much less pronounced.

Figure S6. Simulated R18₁⁷/R14₂⁵ CSA/DIP spectra for different relative tensor orientations. In these simulations, the δ_{xx} principal value CSA is considered to lie in the C α -N-H peptide plane ($\alpha_{NH} = 0^{\circ}$), and the angle β_{NH} between the H-N vector and the CSA δ_{zz} principal value was changed from 0 to 70 degrees with 10-degree increments from (a) to (h), respectively. 64 t_1 increments and 128 t_2 increments were used for each simulation. A powder average was generated with 986 ZCW angles and 3 γ angles.

References:

1. Chan, J. C. C.; Tycko, R., J. Chem. Phys., 2003, 118, 8378-8389.