HO_x Radical Regeneration in Isoprene Oxidation via Peroxy Radical Isomerisation.

II: Experimental Evidence and Global Impact

- Electronic Supporting Information (ESI) -

Jozef Peeters^{a,*} and Jean-François Müller^b

^{a)} Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium ^{b)} Belgian Institute for Space Aeronomy, Avenue Circulaire 3, B-1180 Brussels, Belgium

Table of contents

- p. 2: Revised isoprene oxidation mechanism for low to moderate NOx conditions as proposed earlier (Peeters et al., *PCCP*, 2009), with 303 K rate coefficients from first principles; Figs. S1 and S2
- p. 3: Temperature-dependent rate coefficient expressions for the unimolecular reactions of isoprene hydroxyperoxy radicals, T = 280 to 320 K, as used in this work; Table S1
- p. 4: Effects of allyl-stabilisation of products in peroxy radical H-shifts
- p. 5: Sensitivity analysis; Figs S3 S6
- p. 8: Fate of substantial fraction of formed isoprene hydroxyperoxy radicals not accounted for in work of Paulot et al, *Science*, 2009; Table S2
- p. 10: Fast photolysis of hydroperoxy-methyl-butenals (HPALDs): mechanism and rate; Table S3 and Fig. S7
- p. 17: Reactions of HPALDs with OH: reaction channels, channel rate constants and OHregeneration mechanisms
- p. 19: Fast PACALDs photolysis and (slow) PACALDs + OH reactions

Pages 2-3 and 8-20 constitute a first outline of the *Leuven Isoprene Mechanism (LIM)*

Revised isoprene oxidation mechanism for low to moderate NOx conditions proposed earlier (reference 1) with 303 K rate coefficients from first principles

Figure S1 : Reaction scheme for OH and HO_2 radical formation following 1-OH addition to isoprene (60%). Rate coefficients from first principles **as originally reported** (ref. 1), for T = 303 K. The NO, HO₂ and RO₂ levels are for the pristine forest BL conditions of the Gabriel campaign.²

Figure S2 : Reaction scheme for OH and HO₂ radical formation following 4-OH addition to isoprene (30%). Rate coefficients from first principles as originally reported (ref. 1), for T = 303 K. The NO, HO₂ and RO₂ levels are for the pristine forest BL conditions of the Gabriel campaign (ref. 2).

reference 1 J. Peeters, T. L. Nguyen, and L. Vereecken, *Phys. Chem. Chem. Phys.*, 2009, **11**, 5935 **reference 2** a) J. Lelieveld et al., *Nature*, 2008, **452**, 737; b) T. M. Butler, *Atmos. Chem. Phys.*, 2008, **8**, 4529

Table S1. Temperature-dependent rate coefficient expressions, T = 280 to 320 K, for the various unimolecular reactions of isoprene hydroxyperoxy radicals, as used in this work

- PN Relevant equilibrium constants as derived in reference 1 (and listed in ESI of ref 1) K_{eq} (*cis*-1-OH-isoprene + O₂ \leftrightarrow Z-1-OH-4-OO[•]) = 1.79×10⁻²⁶ exp(+8660/T) cm³ K_{eq} (*cis*-1-OH-isoprene + O₂ \leftrightarrow 1-OH-2-OO[•]) = 3.57×10⁻²⁷ exp(+9970/T) cm³ K_{eq} (*trans*-1-OH-isoprene + O₂ \leftrightarrow 1-OH-2-OO[•]) = 4.00×10⁻²⁷ exp(+9570/T) cm³ K_{eq} (*trans*-1-OH-isoprene + O₂ \leftrightarrow E-1-OH-4-OO[•]) = 9.80×10⁻²⁶ exp(+7900/T) cm³ K_{eq} (*cis*-4-OH-isoprene + O₂ \leftrightarrow Z-4-OH-1-OO[•]) = 7.01×10⁻²⁷ exp(+9110/T) cm³ K_{eq} (*cis*-4-OH-isoprene + O₂ \leftrightarrow 4-OH-3-OO[•]) = 1.82×10⁻²⁷ exp(+10216/T) cm³ K_{eq} (*trans*-4-OH-isoprene + O₂ \leftrightarrow 4-OH-3-OO[•]) = 3.07×10⁻²⁷ exp(+10116/T) cm³
- T-dependent k(-O₂) expressions (280 320 K) for O₂-elimination from the given HOisoprene-OO radicals. These k(-O₂) were derived from the theoretically derived equilibrium constants above (see also ESI ref 1) and the site-specific O₂-addition rate coefficients given in reference 1 and in Figs S1 & S2 above, assuming the latter independent of *T*.

 $k(-O_2)(E-1-OH-4-OO \implies trans-1-OH + O_2) = 3.1 \times 10^{12} \exp(-7900/T) \text{ s}^{-1}$ $k(-O_2)(1-OH-2-OO \implies trans-1-OH + O_2) = 3.7 \times 10^{14} \exp(-9570/T) \text{ s}^{-1}$ $k(-O_2)(1-OH-2-OO \implies cis-1-OH + O_2) = 4.2 \times 10^{14} \exp(-9970/T) \text{ s}^{-1}$ $k(-O_2)(Z-1-OH-4-OO \implies cis-1-OH + O_2) = 7.8 \times 10^{13} \exp(-8660/T) \text{ s}^{-1}$

 $\begin{array}{l} k(-O_2)(E-4-\text{OH-1-OO} \Longrightarrow trans-4-\text{OH} + \text{O}_2) = 5.65 \times 10^{12} \exp(-8410/T) \text{ s}^{-1} \\ k(-O_2)(4-\text{OH-3-OO} \Longrightarrow trans-4-\text{OH} + \text{O}_2) &= 5.0 \times 10^{14} \exp(-10120/T) \text{ s}^{-1} \\ k(-O_2)(4-\text{OH-3-OO} \Longrightarrow cis-4-\text{OH} + \text{O}_2) &= 8.25 \times 10^{14} \exp(-10220/T) \text{ s}^{-1} \\ k(-O_2)(Z-4-\text{OH-1-OO} \Longrightarrow cis-4-\text{OH} + \text{O}_2) &= 1.4 \times 10^{14} \exp(-9110/T) \text{ s}^{-1} \end{array}$

2) *T*-dependent k(T) expressions for the *Z*- δ -OH-peroxy isomerisations by 1,6-H shifts a) values derived from first principles (with WKB tunneling) as in reference 1: $k(Z-1-OH-4-OO =>...=> HO_2 + hydroperoxy-aldehyde) = 9.82 \times 10^8 \exp(-6303/T) \text{ s}^{-1}$ $k(Z-4-OH-1-OO =>...=> HO_2 + hydroperoxy-aldehyde) = 7.32 \times 10^8 \exp(-5556/T) \text{ s}^{-1}$

b) the geometric average of the two expressions above as **adopted for both these 1,6-H shifts in this work** (see present paper)

 $k(1,6-H)(T) = 8.48 \times 10^8 \exp(-5930/T) \text{ s}^{-1}$, used for both Z- δ -OH-peroxys

3) *T*-dependent k(T) expressions for the β-OH-peroxy isomerisations by 1,5-H shifts,
a) the original expressions derived from first-principles (with WKB tunneling) as in reference 1:

 $k(1-OH-2-OO => OH + H_2CO + MVK) = 1.52 \times 10^{11} \exp(-9512/T) \text{ s}^{-1}$ $k(4-OH-3-OO => OH + H2CO + MACR) = 6.08 \times 10^{10} \exp(-8893/T) \text{ s}^{-1}$

b) the geometric average of the above two k(T) multiplied by 5 as adopted for both these 1,5-H shifts in this work (see present paper):

 $k(1,5-H)(T) = 4.81 \times 10^{11} \exp(-9203/T) \text{ s}^{-1}$, used for both β -OH-peroxys

reference 1 J. Peeters, T. L. Nguyen, and L. Vereecken, Phys. Chem. Chem. Phys., 2009, 11, 5935

Effects of allyl-resonance stabilisation of products in peroxy radical H-shifts

Energy barriers E_b at the CBS-QB3 level have been computed for otherwise similar 1,5-H shifts in an alkyl- and an alkenylperoxy radical, showing the effect of the allyl-resonance product stabilisation in the latter, but also of the difference in geometries (T. L. Nguyen and J. Peeters, unpublished results, May 2008):

$CH_3-CH(CH_3)-CH_2OO^{\bullet} \rightarrow {}^{\bullet}CH_2-CH(CH_3)-CH_2OOH$	$E_{\rm b} = 23.5 \text{ kcal/mol}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$E_{\rm b} = 21.6 \text{ kcal/mol}$ 200H

The allyl-resonance, which makes the reaction about 12 kcal/mol less endothermal, though somewhat off-set by the geometry change, lowers the CBS-QB3 barrier here by 1.9 kcal/mol, which on itself increases the 298 K rate coefficient by a factor \approx 25. The partition function ratios and hence the "conventional" pre-factors on the other hand should be rather similar.

Another difference however is the tunneling factor. As reported earlier (reference 1, p.2 and 3) The calculated tunneling factors for the allyl-resonance-assisted 1,6-H shifts in the Z-1-OH-4-OO and Z-4-OH-1-OO peroxys from isoprene are high, about 25 - 30 (at 298 K) in the uni-dimensional WKB approximation based on CBS-QB3-computed IRCs. The high values are likely influenced considerably by the "late" allyl-resonance, which (i) lowers the energy of the product substantially (by 12 kcal/mol), hence increasing the range of energies through which tunneling can occur, but at the same time (ii) makes the barrier more narrow (at the products side), hence increasing the probability of tunneling for a given energy below the top.

Sensitivity analysis

Figure S3 shows the impact of changing the assumed rate coefficient of the 1,6 H-shifts of the δ -isoprene-peroxys, at 303 K and at three NO levels (50, 200, 400 pptv). The rate adopted in this study (i.e. the geometrical average of the theoretical values for the two major δ -isoprene-peroxys) at this temperature is indicated by the dotted vertical line. The figure illustrates the strongly non-linear dependence of the yields on the rates for the 1,6 H-shifts. As an example, at 50 ppt NO a 33-fold variation of the k(1,6-H) from 0.3 to 10 s⁻¹ varies the HPALDs yield by a factor of only 2.6

Figure S3: Calculated yield of HPALDs in the oxidation of isoprene by OH, at 303 K and at three NO levels, depending on the assumed rate for the 1,6 H-shift.

The following figures compares the product yields obtained using the rate coefficients of this work (see Table S1; red curves) with those obtained when using the first-principles rate constants proposed in Peeters et al. (2009) (see Figs. S1 and S2; black curves), at a temperature of 303 K. The MACR/MVK yield ratio shows very little NO-dependence in the updated scheme. Its values (0.52-0.6) are very close to the traditional value (about 0.55) derived from laboratory measurements conducted at high NO¹⁰, but they are slightly lower than the ratio of ~0.66 derived in a laboratory study conducted at 200-600 pptv NO².

Figure S4: Primary yields of HPALD, OH, MACR+MVK and HALD, and ratio of MACR to MVK, at 303 K, using (i) the kinetic rates proposed in Peeters et al. (2009) (in black), (ii) the updated rates from this study (red).

reference 1: IUPAC subcommittee for Gas Kinetic Data Evaluation, http://www.iupac-kinetic.ch.cam.ac.uk/; and references therein

reference 2: M. Karl et al., H.-P. Dorn, F. Holland, R. Koppmann, D. Poppe, L. Rubb, A. Schaub, and A. Wahner, *J. Atmos. Chem.*, 2006, **55**, 167.

Figure S5 shows the impact of a 5-fold increase or decrease of all rates of O_2 addition and elimination on the yields of the major products in the reaction of isoprene with OH. The impact of the 5-fold increase is found to be very small in the atmospherically relevant NO range (<1 ppb). The 5-fold decrease of the rates is seen to decrease the HPALD+HO₂ yield by up to \approx 5%, and to increase the OH+MVK/MACR yield by approximately the same amount.

Figure S5: Primary yields of HPALD, OH, MACR+MVK and HALD, at 303 K, using (i) the best estimates for the O₂ elimination and addition rates (in blue), (ii) these rates multiplied by 5 (green), or (iii) divided by 5 (red).

Figure S6 shows the impact of increasing the assumed stability of the δ -isoprene-peroxys on these yields. The enhanced stability increases the HPALD yield by about 5% in the atmospherically relevant NO range, at the expense of MACR, MVK and OH. The HALD yield shows little sensitivity in the same NO range.

Figure S6: As previous figure, at 303 K, using either best estimate (in black) or halved O_2 elimination rates for the δ -isoprene-peroxys (in red).

Fate of substantial fraction of formed isoprene hydroxyperoxy radicals not accounted for in work of Paulot et al.¹ (*Science*, 2009): details of our analysis.

Our analysis of the Paulot et al. data in their Fig. 1 show that the authors' interpretation leaves the fate of *ca* 25% of the formed ISOP-OH-OO peroxy radicals unexplained, this for larger reaction times *t* when over 50 ppbv isoprene is removed and the initial ≈ 1 ppbv NOx should be sequestered as nitrates. (Note that with *J*(nitrates) of 3×10^{-6} s⁻¹, the nitrate photolysis rate is three orders of magnitude below the isoprene removal rate of 7×10^7 cm⁻³ s⁻¹at *t* = 4 hr).

Our analysis is based on the data of Paulot et al.¹ shown in Fig. 1 or given in either their paper or their Supporting online Material (SOM¹). The various concentrations and rates of interest are listed in **Table S2**, below.

We took the ISOP-OH-OO **peroxy formation rate** equal to $-0.96 \times d[Isopr]/dt$, derived from the [isoprene] vs t profile in Fig. 1 of Paulot et al.¹, the factor 0.96 allowing for $\approx 4\%$ OH addition to a central carbon resulting directly in 4-penten-2-one.² The **[OH]** concentration was found from:

 $-d[ISOP]/dt = k_{pr} \times [ISOP] \times [OH] \quad \text{with } k_{ISOPR+OH} = 1.0 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}.$

The rate of ISOP-OH-OOH **hydroperoxide** *formation* by the ISOP-OH-OO + HO_2 reaction was obtained from the [ISOP-OH-OOH] vs t profile as:

d[ISOP-OH-OOH]/dt + 7.4×10⁻¹¹ cm³ s⁻¹×[OH][ISOP-OH-OOH],

i.e. with $k_{\text{ISOPOHOOH+OH}}$ slightly reduced compared to the experimental¹ $k = 7.9 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$, to account for $\approx 7\%$ ISOP-OH-OO regeneration in this reaction (see their SOM¹).

All other ISOP-OH-OO sinks considered by Paulot et al.¹ result in either:

- MVK or MACR, with reported summed yield of 12%,
- C₅-diols, with measured reported yield of 2%,
- or C₅-hydroxycarbonyls (HALD or isomer), with yield implied to be minor compared to that of MVK & MACR (SOM¹) and assumed here as 3%;

with a combined yield of $\approx 17\%$. Their contribution to the ISOP-OH-OO removal rate is therefore taken as $0.17 \times -d[Isopr]/dt$ (not listed in **Table S2**).

The fraction of ISOP-OH-OO peroxys formed not accounted for (**missing rate peroxys** in the table) is then obtained as:

rate peroxy formation – rate hydroperoxide formation – (0.17 × –d[Isopr]/dt) *i.e.*: -0.79 ×d[Isopr]/dt – rate hydroperoxide formation

and division by the ISOP-OH-OO peroxy formation rate yields the fraction of formed ISOP-OH-OO not accounted for, or the fraction missing peroxys (see Table S2).

In this way we find that consistently $25\pm1\%$ of the formed peroxy radicals are not accounted for at times t = 3, 4 and 5 hr. We ascribe this to HPALD formation.

<i>t</i> (hr)	$[Isoprene] (10^{12} \text{ cm}^{-3})$	-d[Isopr]/dt (10 ⁷ cm ⁻³ s ⁻¹)	[OH] (10 ⁶ cm ⁻³)	rate peroxy formation	rate hydro- peroxide	missing rate peroxys	fraction missing
				$(10^{7} \text{ cm}^{-3} \text{s}^{-1})$	$(10^7 \text{cm}^{-3} \text{s}^{-1})$	$(10^{7} \text{ cm}^{-3} \text{s}^{-1})$	peroxys (%)
0.5	2.04	14.9	0.73	14.3	7.0	4.77	33%*
3.0	1.02	8.4	0.82	8.1	4.7	1.94	24%
4.0	0.74	6.8	0.92	6.5	3.75	1.62	25%
5.0	0.52	5.8	1.10	5.6	3.15	1.43	26%

Table S2 Calculation of fraction of formed ISOP-OH-OO radicals not accounted for

*missing fraction larger at 0.5 hr because of reactions of peroxys with remaining NO at short times¹

reference 1: F. Paulot, J. D. Crounse, H. G. Kjaergaard, A. Kurten, J. M. St. Clair, J. H. Seinfeld, and P. O. Wennberg, Science, 2009, 325, 730

reference 2: E. E. Greenwald, et al., J. Phys. Chem., 2010, 114, 904

Fast photolysis of hydroperoxy-methyl-butenals (HPALDs): proposed mechanism and estimated rate.

Mechanism

We propose that the hydroperoxy-methyl-butenals (HPALDs) resulting from the Z- δ -OHperoxy 1,6-H shifts, undergo fast O--OH dissociation directly in the excited singlet state reached upon excitation of the S₀ ground state (\approx 290 - \approx 360 nm).

 $O=CH-C(CH_3)=CH-CH_2OOH + hv \rightarrow HPALD^* \rightarrow O=CH-C(CH_3)=CH-CH_2O^{\bullet} + {}^{\bullet}OH$

The excited singlet state results from $n_1 \rightarrow \pi^*$ excitation of the conjugated α,β -enone O=C-C=C- chromophore, $S_0 + h\nu \rightarrow S_1$, with S_1 known to be 74 kcal/mol higher in energy than the S_0 ground state (adiabatic energy difference), as experimentally determined for acrolein,¹ the smallest α,β -enone homologue. Both MACR and MVK feature this same O=C-C=C- chromophore, and hence their known absorption cross sections can be adopted here. The $n_1 \rightarrow \pi^*$ excitation leaves an unpaired non-bonding n_1 electron on the carbonyl O while promoting its original partner to the anti-bonding π^* orbital, which extends over the O=C-C=C- conjugated system. Along the O--OH dissociation coordinate of interest here, the S_1 surface is expected to connect to an excited alkoxy radical RO** and ground state OH(²\Pi) (see the schematic representation in Fig. S7).

However, for the HPALDs there is another singlet surface, S_2 , which is reached by promotion of a lone pair n₂-electron of the O--OH group to the σ^* antibonding orbital of O--O. This S_2 surface is therefore repulsive along the O--OH coordinate. *Vertical* excitation of the ground state of an RO–OH hydroperoxide to the repulsive S_2 state has recently been computed at high *ab initio* levels of theory to require about 135 kcal/mol,² corresponding to ≈ 210 nm photons. This repulsive surface connects to the ground state alkoxy + OH radical fragments, and for a monofunctional ROOH hydroperoxide, direct $n_2 \rightarrow \sigma^*$ photo-excitation is responsible for straight hydroperoxide photodissociation. However, as shown schematically in Fig. S7, for the HPALDS with their two chromophores, the (n_2,σ^*) - excited S_2 surface, rapidly coming down along the O--O coordinate towards the asymptote of the ground state RO[•] + OH products, should cross the (n_1,π^*) -excited S_1 surface that leads up to RO[•] + OH. Lifting the HPALD C_s symmetry restriction will result in configuration interaction and hence an "avoided crossing" of S_1 and S_2 , so giving rise to two "new" singlet S_1/S_2 states, with the maximum of the "new" lower curve becoming effectively a transition state for direct RO--OH dissociation into the ground state products on this lowest excited singlet surface.

First, the crossing point for the two original S_1 and S_2 states under C_s symmetry and its energy relative to the S_1 zero-point level will be evaluated. For this, one needs to know (i) the excitation energy of the O=C-C=C- chromophore, i.e. the energy of the S_1 minimum with respect to that of S_0 , and (ii) the evolution of the potential energy of this molecule in its (n_1,π^*)-excited state as a function of the O-OH distance; the shape of this evolution as function of r(O-OH)should be quasi identical to that for the ground state of a -CH₂O-OH hydroperoxide, as the (excited) α,β -enone moiety is not affected by the r(O-OH) bond lengthening (the O-OH being separated from the enone moiety by the CH₂ group). Also needed is (iii) the energy of the lowest repulsive excited state (S_2) of the -CH₂O-OH moiety

¹ A.D. Walsh, Trans. Faraday Soc., 1945, 41, 498.

² J. D. Watts and J. S. Francisco, J. Chem. Phys., 2006, **125**, 104301.

likewise as a function of the O–OH distance. These data are available: the adiabatic excitation energy (i) was experimentally determined for the simplest α,β -enone, acrolein, at 74 kcal/mol by Walsh,¹ while (ii) and (iii) can both be taken from the recent high-level computations by Watts and Francisco² for CH₃O–OH, in combination with the vibration zero point energy (VZPE) data from Sun et al. for this same molecule and for its dissociation products.³ Note that RO–OH hydroperoxide dissociation energies for allylic R—such as for the HPALDs have been shown quasi identical to these for (any) alkyl R,⁴ while the most recent experimental determination of D_e(CH₃O-OH), supported by high-level ab initio computations, gave a value of 42.6±0.6 kcal/mol.⁵ All data required for the evaluation are thus available, either from experiment, or from recent high-level *ab initio* computations.

The potential energy data of Watts and Francisco² for CH₃CO–OH were computed over the r(O-OH) range 1.4 to 2.0 A using the QCISD(T)/aug-cc-pVTZ level of theory for the ground state, and the EOM-CCSD level for the vertical excitation energies to the repulsive 2¹A singlet state that we denote here as S_1 . Note that the authors acknowledge that the EOM-CCSD vertical excitation energies are systematically somewhat too high compared with full configuration interaction computations; e.g. for the H_2O_2 case, they found that the EOM-CCSD excitation energies are \approx 3.5 kcal/mol too high compared to the much more reliable MSCASPT2 level (that was computationally too expensive to be applied to CH₃OOH). The potential energy results of Watts and Francisco², $V_{gst}(r_{O-O})$ for the CH₃OOH ground state, and the potential energies $V_{rep}(r_{O-O})$ for the repulsive excited singlet state, corresponding here to S₂, are listed in Table S3, both relative to the $V_{gst}(r_e)$ minimum. However, the vibration zero-point energies (VZPE), not computed by Watts and Francisco, have to be taken into account, or rather their changes with r(O-O), as well as the VZPE differences between the states involved. From the data of Sun et al.³ and using VZPE(OH) = 5.34 kcal/mol, the change in VZPE from the CH₃O–OH equilibrium $r_e(O-O) = 1.46$ A to $r(O-O) = \infty$, i. e. for dissociation into $CH_3O^{\bullet} + {}^{\bullet}OH$, is found to be -5.9 kcal/mol. For intermediate r_{O-O} , the VZPE change can be taken isometric with the pure potential energy change. With the VZPEcorrected energies $E_{gst}(r_{O-O})$ now relative to the zero-point vibration level of the ground state, one then has for the S_0 ground state: $E_{gst}(r_{O-O}) = V_{gst}(r_{O-O}) - 5.9 \times V_{gst}(r)/V_{gst}(\infty)$ (in kcal/mol), where $V_{gst}(\infty) = 42.6 + 5.9$ using the recent experimental D_e of 42.6 kcal/mol for CH₃O–OH from Matthews et al.⁵ For the repulsive state, the ZPVE vibration energy can be taken as that of the ground state less the ≈ 1 kcal/mol for the O–O stretch contribution at equilibrium $r_{\rm e}$ (O-O). The VZPE-corrected energy for the repulsive S₂ state, also relative to the VZP-level of the ground state, is then found as $E_{rep}(r_{O-O}) = V_{rep}(r_{O-O}) - 1 - 4.9 \times V_{gst}(r)/V_{gst}(\infty)$, *i. e.* with the VZPE change again isometric with the potential energy change of the ground state.

The energy of the α,β -enone (n_1,π^*) -excited state, $E(S_1)(r_{O-O})$, is simply equal to $E_{gst}(r_{O-O})$ increased by a constant 74 kcal/mol, the experimental adiabatic excitation energy of the α,β enone chromophore¹. From these energy data for the S₁ and S₂ states in Table S3, the crossing of these states under C_s symmetry is found to occur at $r_{O-O} = 1.71$ A and 84.5 kcal/mol above the S₀ VZP-level, i.e. 10.5 kcal/mol above the S₁ VZP-level. Note that both these values are likely overestimates by at least 1 kcal/mol, since the EOM-CCSD-based S₂ energies near the S₀ equilibrium geometry are expected to be too high by about 3.5 kcal/mol¹ (see above). On the other hand, the S₁ energies as derived here are adiabatic, i.e. for the minimum of the α,β enone (n_1,π^*) -excited state; vertical excitation from the S₀ ground state ZPV-level to S₁

³ H. Sun, C.-J. Chen and J. W. Bozzelli, J. Phys. Chem. A, 2000, 104, 8270.

⁴ Sebbar, N.; Bockhorn, H.; Bozzelli, J. W. Phys. Chem. Chem. Phys., 2002, 4, 3691.

⁵ J. Matthews, A. Sinha and J. S. Francisco, J. Chem. Phys., 2005, **122**, 221101.

requires about 85 kcal/mol,¹ sizably more than the adiabatic 74 kcal/mol adiabatic¹ value. Therefore, instead of a crossing "point", one has an intersection of an up-sloping, fairly narrow S₂ valley with a broader S₁ well, but somewhat off the S₁ minimum ("narrow" or "broad" referring to the energy along the carbonyl C=O or C[•]–O[•] coordinate, respectively), giving rise to a crossing "seam". The lowest energy of the seam is estimated around 12 kcal/mol above the VZP-level of the S₁ well.

Table S3. Potential energies, in kcal/mol, of CH₃OOH ground state and repulsive singlet excited 2^{1} A state;² and ZPVE-corrected Energies for the S₀, S₁ and S₂ states relative to ZPVE-level of the ground state; as function of r(O-O)

<i>r</i> (O-O)/A	$V_{gst}(r)^{a}$	$V_{\rm rep}(r)^{\rm b}$	$E(S_0)(r)^c$	$E(\mathbf{S}_1)(r)^{d}$	$E(S_2)(r)^e$
1.46	0	135	0	74	134
1.5	1.0	124.4	0.9	74.9	123.3
1.6	5.0	101.6	4.4	78.4	100.1
1.7	11.4	87.6	10.1	84.1	85.4
1.8	18.6	78.8	16.3	90.3	75.9
1.9	25.8	73.6	22.7	96.7	70.0
2.0	33.6	71.2	29.5	103.5	66.8
00	48.5 ^f	48.5 ^g	42.6 ^h	116.6	42.6 ^h

^a from ref 2, relative to ground state minimum potential energy

^b from ref 2, relative to ground state minimum potential energy

^c $E(S_0)(r)$ relative to VZP-level of ground state; derived from $V_{gst}(r)$ by correcting for VZPE change

 $^{d}E(S_{1})(r) = E(S_{0})(r) + 74$ kcal/mol, the latter the experimental adiabatic excitation energy of the α,β -enone chromophore¹ (see text)

^e $E(S_2)(r)$ relative to ZPVE-level of ground state; derived from $V_{rep}(r)$ by correcting for VZPE change

^f equal to the experimental D_e of 42.6 kcal/mol⁵ plus the increase in ZPVE of 5.9 kcal/mol from $r_{0-0} = r_e$ to ∞

^g same RO + OH dissociation limit as ground state; ^h experimental D_e value⁵; same E_{∞} limits for S₀ and S₁.

Yet, when lifting the C_s symmetry restriction implicit in all the above, for instance by allowing the carbonyl-O to move out of the HPALD symmetry plane, left or right, the S_1 and S_2 states become of the same species, such that their configuration interaction results in an avoided crossing. In other words, relaxation of the symmetry gives rise to a "conical intersection" instead of a single crossing point. Symmetry-relaxation can lower a reaction barrier drastically, as examplified by the decomposition of H_2CO into $H_2 + CO$ with a much lower barrier under C_s than C_{2v} symmetry. For the case at hand, instead of two crossing curves, symmetry breaking gives two "new" excited S_1/S_2 surfaces, with the maximum on the lower excited surface then constituting a transition state to direct HPALD* dissociation into ground state RO[•] + •OH. For usual configuration interaction energies, the energy of this transition state is then expected to be somewhat less than 84 kcal/mol above the S_0 VZP-level, implying a barrier to dissociation of the (n_1,π^*) -excited HPALD* somewhat below 10 kcal/mol.

Note that this barrier is likely significantly lower, since without symmetry constraints the original S_1 curve for larger r_{O-O} can lie lower than detailed above due to the strong stabilizing interaction between the leaving 'OH and the excited-carbonyl C' site, amounting to a "missed" 1,5-OH shift in the singlet HPALD—a missed shift indeed, due to the avoided crossing with the repulsive S_1 state. On this basis, the energy barrier E_b for O–OH homolysis on the symmetry-free excited singlet surface can be safely estimated at less than 10 kcal/mol, and likely around 8 kcal/mol.

Figure S7. Schematic representation of the Potential Energy Surfaces for the ground state (S_0) and the two lowest excited singlet states S_1 and S_2 of O=CH-C(CH₃)=CH-CH₂OOH (HPALD), for point group C_s . S_1 is the (n_1,π^*) excited state (O=C-C=C chromophore) whereas S_2 is the repulsive (n_2,σ^*) excited state (O-OH chromophore). RO is the ground state O=CH-C(CH₃)=CH-CH₂O[•] radical, and RO* its doublet excited state. Only the vibration zero point energy for the O-O stretch (circa 1 kcal/mol) is schematized here. Photodissociation to ground state RO + OH takes place by 290 - 360 nm $S_0 \rightarrow S_1$ excitation and crossing from S_1 to S_2 . Under C_1 point group, i.e. relaxing the planar symmetry, configuration interaction of the two states of the same species results in an avoided crossing and the effective barrier for dissociation on the excited singlet surface is lowered by configuration interaction ("conical intersection").

Rate and approximate J value

The nascent S_1^{\dagger} state as formed over most of the (n_1,π^*) absorption band should thus have enough excess vibration energy to promptly dissociate in this way. The rate of the direct O--OH dissociation on S_1 can be estimated using RRKM theory. [Whitten-Rabinovitch approximation. Details on inputs: s=42; $E_{ZPE} = 74$ and $E^{\neq}_{ZPE} = 72$ kcal/mol; $E_b \approx 8$ kcal/mol; $\Pi v_i / \Pi v_j^{\dagger} \approx 800$ cm⁻¹ × 10; $f_{centrif} = 1.5$; reaction path degeneracy = 2]. Thus it is found for the TS at 82 kcal/mol (= 74 + 8) above the S₀ VZP-level:

 $k^{\dagger}(93 \text{ kc/m})(320 \text{ nm}) \approx 5 \times 10^{11} \text{ s}^{-1}$ $k^{\dagger}(88 \text{ kc/m})(340 \text{ nm}) \approx 1 \times 10^{11} \text{ s}^{-1}$ $k^{\dagger}(84.3 \text{ kc/m})(355 \text{ nm}) \approx 1.5 \times 10^{10} \text{ s}^{-1}$

(the energies are referred here to the S₀ zero-point level; an average thermal contribution $\langle E_{\text{therm}} \rangle$ of 3.5 kc/mol is added to the absorbed-photon energies).

These very high rates are owed to the high *relative* excess internal energy; e.g. at 340 nm: $E_{int}(S_1) = 88 - 74 = 14$ kcal/mol, which is 6 kcal/mol in excess of the 8 kcal E_b . These high rates of S₁ removal by direct dissociation should be the fastest S₁ removal processes by far. They can be compared for instance to the highest observed S₁ removal rates for acetaldehyde upon 310 - 315 nm excitation, measured to be at most 5 10⁸ s⁻¹(at very low pressures), and ascribed to mainly intersystem crossing (ISC) to the T₁ state and dissociation into CH₃ + CHO on the T₁ surface.⁶ The HPALD S₁ dissociation rate also outruns collisional quenching, up to about 360 nm, meaning over almost the entire absorption band, which should ensure a high *J*, approaching 5 10⁻⁴ s⁻¹ for an overhead sun.

Energy disposal

As straight O--O homolysis on a repulsive curve is involved here, most of the potential energy released from the TS (at \approx 82 kcal/mol above the S₀ VZP-level) to the products asymptote (at \approx 43 kcal/mol), should dynamically go to relative energy of translation and rotation of the two separating fragments, while a smaller fraction (\approx 30%) can go to internal energy of the RO[•] fragment. The excess energy above the TS, about 8 kcal/mol on average, should be statistically distributed over all the modes of the fragmenting molecule, thus in part also going to the degrees of freedom of relative motion of the fragments. This means that the oxy radical fragment should not contain much internal energy, \approx 18 kcal/mol on average.

Subsequent chemistry

The O=CH-C(CH₃)=CH-CH₂O[•] oxy fragment (whether still activated or not) should undergo a very fast 1,5-H shift

$$O=CH-C(CH_3)=CH-CH_2O^{\bullet(\dagger)} \rightarrow O=C^{\bullet}-C(CH_3)=CH-CH_2OH$$

with barrier expected below 7 kcal/mol. Neither elimination of HCHO facing a barrier of 23 kcal/mol⁷ (SAR), nor reaction with O_2 are in any way competitive. The shift is exo-ergic for 17 kcal/mol, such that the resulting acyl radical may contain some 30-35 kcal/mol provided collisional energy loss prior to the shift remains limited. Subsequent prompt CO elimination is however not expected to be important given the high barrier of about 21 kcal/mol.⁸ (For prompt CO elimination to really compete with collisional stabilisation, the acyl radical would

⁶ G. H. Leu, C. L. Huang, S.H. Lee, I.C. Chen, J. Chem. Phys., 1998, 109, 9340

⁷ L. Vereecken and J. Peeters, *Phys. Chem. Chem. Phys.*, 2009, 11, 9062-9074

⁸ R. Méreau, M. T. Rayez, J. C. Rayez, F. Caralp and R. Lesclaux, *Phys. Chem. Chem. Phys.*, 2001, **3**, 4712.

have to contain at least 40-45 kcal/mol internal energy, i.e. ≈ 10 kcal/mol more than estimated above). Therefore, the acyl product is rather expected to stabilise and add O₂ to form an acylperoxy:

 $O=C^{\bullet}-C(CH_3)=CH-CH_2OH+O_2 \rightarrow O=C(OO^{\bullet})-C(CH_3)=CH-CH_2OH$

Important to stress is that the fate of this acyl radical would however be quite different if the HPALD photolysis were to occur as we originally suggested, that is by fast internal conversion of the excited S₁ state into highly vibrationally excited electronic ground state S₀[†], which then would promptly dissociate into ground state RO[•] + [•]OH. In that case all the energy above the 43 kcal/mol dissociation limit would be available for statistical distribution over the internal modes, with therefore about (90 - 43) × (36/42) = 40 kcal/mol ending up as internal energy of the RO[•] fragment. For such an highly activated oxy radical, the (17 kcal/mol exoergic) 1,5-H shift would undoubtedly be prompt, thus resulting in an acyl radical with an energy content of 57 kcal/mol. With such a high internal energy, the acyl radical should promptly eliminate CO at a rate of $\approx 5 \times 10^{10} \text{ s}^{-1}$ (a hundred times faster than for the mechanism above), easily outrunning collisional stabilisation. Hence, for this earlier proposed HPALD photolysis mechanism, one would rather end up with [•]OH + CO + [•]C(CH₃)=CH-CH₂OH instead of [•]OH plus the acyl radical as for the mechanism newly put forward here.

The resulting acylperoxy radical above, a Z conformer too, should undergo a very similar 1,6-H shift as the Z-4-OH-1-OO[•] peroxy precursor ($H_2C(OO^•)-C(CH_3)=CH-CH_2OH$) of one of the HPALDs:

 $O=C(OO^{\bullet})-C(CH_3)=CH-CH_2OH \rightarrow HOOC(O)-C(CH_3)=CH-C^{\bullet}HOH$

One difference is a stronger internal H-bond in the reactant (between the hydroxy-H and the carboxyl-O; 7-ring) of \approx 4 kcal/mol, that has to be broken for the H-shift, instead of the \approx 1.3 kcal/mol internal H-bond (8-ring) we computed for the Z-4-OH-1-OO[•] reactant. Yet, this is most likely overcompensated by the peroxy-acid H-OO bond formed here being 4-5 kcal/mol stronger⁹ than the hydroperoxide H-OO bond formed in the Z-4-OH-1-OO[•] case. Therefore, we expect a barrier \approx equal to (or somewhat lower than) the average 17 kcal/mol barrier we computed for the 1,6-H shifts in Z-4-OH-1-OO[•] and Z-1-OH-4-OO[•]. As the reaction is similarly allyl-assisted, we expect also a similar tunneling factor of 25 as our WKB-computed factor for the Z-4-OH-1-OO[•] and Z-1-OH-4-OO[•] cases, such that the 298 K rate constant can be estimated at $\geq 2 \text{ s}^{-1}$, i.e. nearly two orders of magnitude faster than the combined rate (0.045 s⁻¹) of the acylperoxy reactions with HO₂, NO₂, NO and RO₂ in Gabriel conditions, and in any case outrunning the traditional HO₂ and NO_x reactions in all atmospheric conditions with low- to moderate NO levels.

The product radical of the 1,6-H shift will rapidly react with O₂

 $HOOC(O)-C(CH_3)=CH-C^{\bullet}HOH+O_2 \rightarrow$

 $HO_2 + HOOC(=O) - C(CH_3) = CH - CH = O$ (PACALD)

forming another highly photolabile species. The HPALD photolysis mechanism proposed here will therefore result in the overall reaction:

⁹ M. Jonsson, J. Phys. Chem., 1996, 100, 6814

$$O=CH-C(CH_3)=CH-CH_2OOH + hv (+ 2 O_2) \rightarrow OH + HO_2 + HOOC(=O)-C(CH_3)=CH-CH=O$$

or:

$$HPALD1 + hv (+ 2 O_2) \rightarrow OH + HO_2 + PACALD1$$

And similar for the other HPALD formed via 1,6-H shift from the Z-4-OH-1-OO[•] radical:

 $\begin{array}{c} O=CH-CH=C(CH_3)-CH_2OOH+hv\ (+\ 2\ O_2)\rightarrow\\ OH+HO_2+HOOC(=O)-CH=C(CH_3)-CH=O \end{array}$

or:

$$HPALD2 + hv (+ 2 O_2) \rightarrow OH + HO_2 + PACALD2$$

Reactions of hydroperoxy-methyl-butenals (HPALDs) with OH: reaction channels, channel rate constants and likely, OH-regenerating mechanisms

Rate constants (298 K) for the various OH + HPALDs reaction channels are essentially based on (i) the IUPAC-recommended overall rate constants for OH reactions with analogous unsaturated carbonyls featuring O=C-C=C conjugation (MACR, MVK, acrolein, crotonaldehyde),¹⁰ and (ii) their primary-product distributions as derived from the high-NO experiments of Orlando et al.¹¹ These data and results are consistent with a 298 K rate constant for the aldehydic-H abstraction equal to 1.5×10^{-11} cm³ s⁻¹ as for CH₃CHO, whereas, due to the e⁻ withdrawing CHO group, both the OH addition rates to >C=C< are reduced by a factor 4.0 as compared to the predictions of our SAR for OH-addition to (poly-)alkenes,¹² however with the *ratio* for the site-specific rate constants maintained at the predicted 0.45:3:5.5 for resulting primary, secondary and tertiary radicals, respectively. (Note, for MVK, the CH₃CO group reduces both OHaddition rates by only a factor 1.75; this is due to compensation by the CH₃ group which satisfies much of the e⁻ appetite of the carbonyl-O).

In addition, H-abstraction also occurs from the -CH₂OOH group (hydroperoxide α -H), with rate coefficient estimated at 1×10^{-11} cm³ s⁻¹ based on the 0.6×10^{-11} cm³ s⁻¹ for the similar CH₃CH₂OOH case, ^{13,10} but increased here by a factor 1.6 for the allyl-resonance in the product here, taking into account the dependence of this effect on the C-H bond energy.¹⁴

Thus, for $O=CH-C(CH_3)=CH-CH_2OOH + OH$, (denoted as HPALD1), the following major product channels with their rate constants (298 K) are expected, all likely regenerating OH:

1a) HPALD1 + OH \rightarrow H₂O + O=C[•]-C(CH₃)=CH-CH₂OOH $k_{1a} = 1.5 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ and O₂ addition \rightarrow O=C(OO[•])-C(CH₃)=CH-CH₂OOH and fast, allyl-assisted 1,6-H shift \rightarrow O=C(OOH)-C(CH₃)=CH-C[•]HOOH \rightarrow O=C(OOH)-C(CH₃)=CH-CH=O + OH ¹⁵ i.e. overall: HPALD1 + OH (+ O₂) \rightarrow PACALD1 + OH + H₂O 1b) HPALD1 + OH \rightarrow O=CH-C[•](CH₃)-CH(OH)-CH₂OOH $k_{1b} = 1.4 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ and O₂ addition \rightarrow O=CH-C(OO[•])(CH₃)-CH(OH)-CH₂OOH and fast 1,5-H shift¹⁶ \rightarrow O=CH-C(OOH)(CH₃)-CH(OH)-C[•]HOOH \rightarrow \rightarrow O=CH-C(OOH)(CH₃)-CH(OH)-CH=O + OH ¹⁵ i.e. overall: HPALD1 + OH (+ O₂) \rightarrow O=CH-C(OOH)(CH₃)-CH(OH)-CH=O + OH

¹⁰ IUPAC subcommittee for Gas Kinetic Data Evaluation, http://www.iupac-kinetic.ch.cam.ac.uk/; and references therein

¹¹ a) J. J. Orlando and G. S. Tyndall, *J. Phys. Chem. A*, 2002, **106**, 12252; b) J.J. Orlando, G. S. Tyndall and S. E. Paulson, *Geophys. Res. Lett.*, 1999, **26**, 2191.

¹² a) J. Peeters, W. Boullart, and J. Van Hoeymissen, in P. M. Borrell, *et al.* (Eds.), Proc. Eurotrac Symp '94, SPB Academic Publishers, The Hague, p. 110 (1994); b) J. Peeters, W. Boullart, V. Pultau, S. Vandenberk, and L. Vereecken, *J. Phys. Chem. A*, 2007, **111**, 1618

¹³ C. Wang, C. and Z. Chen, *Atmos. Environ.*, 2008, **42**, 6614; note that in their experiments, net hydroperoxide removal occurs only upon abstraction of the hydroperoxide α-hydrogens, CH_3CH_2OOH , indicated here in bold. ¹⁴ L. Vereecken and J. Peeters, Chem. Phys. Lett., 2001, **333**, 162-168

¹⁵ R-C[•]HOOH radicals are unstable and decompose spontaneously into R-CHO and OH: L. Vereecken, T. L. Nguyen, I. Hermans, and J. Peeters, *Chem. Phys. Lett.*, 2004, **393**, 432

¹⁶ 1,5-H shift assisted by double H-bonding: between carbonyl-O and alcohol-H, and between hydroperoxide-H and alcohol-O (two 6-rings with a common C–O bond), resulting in estimated k(1,5-H)(298 K) of $\approx 5 \text{ s}^{-1}$

 $k_{1c} = 1.0 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ 1c) HPALD1 + OH \rightarrow H₂O + O=CH-C(CH₃)=CH-C[•]HOOH \rightarrow O=CH-C(CH₃)=CH-CH=O + OH

i.e. overall: HPALD1 + OH \rightarrow H₂O + O=CH-C(CH₃)=CH-CH=O + OH

minor channel: OH-addition to α-carbon

$$k_{1b'} = 0.7 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$$

with fate of resulting peroxy radical uncertain

 $k_{1d} = 0.6 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ (channel 1d, not considered further: abstraction of OO-H which, counting also HPALD photolysis, should be minor (<10%), and can either regenerate HPALD1 in high [HO₂] conditions, or, more likely, yield OH + PACALD1 via consecutive 1.6-H shifts of peroxy radicals.)

For the other HPALD, i.e. $O=CH-CH=C(CH_3)-CH_2OOH + OH$, similar major reaction channels are expected, and similar overall reactions (given here without details):

 $k_{2_9} = 1.5 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ 2a) HPALD2 + OH (+ O_2) \rightarrow PACALD2 + OH + H_2O 2b) HPALD2 + OH (+ O_2) \rightarrow O=CH-CH(OOH)-C(CH₃)(OH)-CH=O + OH $k_{2b} = 0.7 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ 2b') HPALD2 + OH (+ O_2) \rightarrow O=CH-CH(OH)-C(CH₃)(OO[•])-CH₂OOH $k_{2b} = 1.4 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ (note: further mechanism of peroxy radical still uncertain) $k_{2c} = 1.0 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ 2c) HPALD2 + OH \rightarrow OCH-CH=C(CH₃)-CHO + OH + H₂O (note: channel 2d, not considered further: $k_{1d} = 0.6 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ $HPALD2 + OH \rightarrow H_2O + O=CH-CH=C(CH_3)-CH_2OO^{\bullet}$

expected to regenerate HPALD2, or more likely to yield OH + PACALD2)

Fast PACALD photolysis

Mechanism

The unsaturated peroxy-acid-aldehydes (PACALDs) are bi-conjugated O=C-C=C-C=O systems, similar to butenedial and Z-4-oxo-2-pentenal, which feature $n \rightarrow \pi^*$ absorption maxima around 340 - 345 nm and have measured J values of (1 to 2) × 10⁻³ s⁻¹.¹⁷ Given that the peroxy-acid O--O bond strength is also only ≈40 kcal/mol, we can expect again a very efficient direct PACALD dissociation in its initially excited S₁ state, via a similar mechanism as the HPALDs, above.

 $\begin{array}{l} \text{HOOC(=O)-C(CH_3)=CH-CH=O + hv} \rightarrow S_1 \rightarrow \\ \textbf{OH} + {}^{\bullet}\text{OC(=O)-C(CH_3)=CH-CH=O} \end{array}$

The J value is likely about double that for the HPALDs, as the absorption cross sections are somewhat higher and the curve is shifted more towards longer wavelengths, i.e. for an overhead sun: $J \approx 1 \times 10^{-3} \text{ s}^{-1}$.

Energy disposal and suggested subsequent chemistry

For the HPALDs, the potential energy decrease from the S_1/S_2 (avoided) crossing to the oxy + OH dissociation fragments involves only the repulsive O--O homolysis. Yet for the PACALDs, the repulsive O--O breaking is accompanied at the end of the process by another electronic structure change, i.e. electron delocalization in the resulting acyloxy function, ${}^{\bullet}OC(=O)-C= \iff O=C(O^{\bullet})-C=$, affording a resonance stabilization energy of *ca* 13 kcal/mol, which should go entirely to vibrational energy of the acyloxy product. Adding a conservative 20% of the repulsive energy release (here minus the dedicated 13 kc/mol specified), one estimates an average total internal energy of the nascent acyloxy fragment around 27 kcal/mol.

The RRKM estimate (W-R approximation) for the rate of CO₂ elimination from the activated acyloxy product radical, for a barrier of 7 kcal/mol,⁷ at nascent internal energy of 25 kcal/mol, is $\approx 3 \times 10^{12}$ s⁻¹ (and $\approx 0.5 \times 10^{12}$ s⁻¹ for the PACALD2-acyloxy, with barrier 10 kcal/mol⁷), which far outruns collisional energy loss (and also the competing 1,5-H shift of the aldehyde-H to the acyloxy site, with estimated rate $\approx 5 \times 10^{10}$ s⁻¹ for a barrier of 6 kcal/mol):

 $^{\circ}$ OC(=O)-C(CH₃)=CH-CHO[†] \rightarrow CO₂ + $^{\circ}$ C(CH₃)=CH-CHO

The vinyl-type radical then adds O₂, after which a 1,5-H shift of the aldehyde-H can occur, with estimated barrier (below) 18 kcal/mol, resulting in a resonance-stabilized radical that is unstable as it can spontaneously expell OH:

[•]C(CH₃)=CH-CHO + O₂ → [•]OOC(CH₃)=CH-CHO →
HOOC(CH₃)=CH-C[•]=O
$$\iff$$
 HOOC[•](CH₃)CH=C=O
→ **OH** + CH₃C(O)-CH=C=O

The 1,5-H shift and OH elimination might occur in a concerted process:

 $^{\circ}OOC(CH_3)=CH-CHO \rightarrow OH + CH_3C(O)-CH=C=O$

¹⁷ M. P. O'Connor, J. C. Wenger, A. Mellouki, K. Wirtz and A. Munoz, *Phys. Chem. Chem. Phys.*, 2006, **8**, 5236

For a barrier of 18 kcal/mol, and with a tunneling factor of ≈ 25 as for the 1,6-H shift in the initial Z- δ -OH-peroxys, the estimated rate is $\approx 1 \times s^{-1}$ at 298 K, i.e. far faster than the traditional reactions with HO₂ and NO in low- to moderate NO_x conditions.

PACALD1 photolysis can then be represented as a single reaction:

HOOC(=O)-C(CH₃)=CH-CH=O + hv (+O₂) \rightarrow 2 OH + CO₂ + O=C(CH₃)-CH=C=O

The thus suggested product from PACALD1 photolysis is acetylketene, while that from the analogous PACALD2 is formyl-methylketene:

$$PACALD1 + hv (+O_2) \rightarrow 2 \text{ OH} + CO_2 + O=C(CH_3)-CH=C=O$$

$$PACALD2 + hv (+O_2) \rightarrow 2 OH + CO_2 + O=CH-C(CH_3)=C=O$$

These products, conjugated α -oxo-ketenes, are quite labile structures that should readily photolyze and react rapidly with OH, likely products among other being hydroxyacetone and acetaldehyde.

PACALD + **OH reactions:** only one channel of importance, and slow compared to photolysis

For the reactions of HOOC(O)-C(CH₃)=CH-CH=O (PACALD1) and HOOC(O)-CH=C(CH₃)-CH=O (PACALD2) with OH, only one channel is of importance, i.e. the aldehyde-H abstraction, with expected channel rate constant 1.5×10^{-11} cm³ s⁻¹ (as generally for aldehyde functionalities in larger molecules). OH addition to >C=C< is slowed down to quasi negligible rates due to the presence of **two** e⁻ withdrawing substituents, the formyl O=CH group on the right, and the (per)acid group O=C(OOH) on the left, together thus reducing the summed addition rate constant by a factor \approx (4 × 4), i.e. to (1/16) × (5.5 + 3) × 10⁻¹¹ cm³ s⁻¹ \approx 0.5 × 10⁻¹¹ cm³ s⁻¹. ¹² Moreover, the rate of OH reaction with the peroxy-acid functionality proper, as for peracetic acid, is generally considered slow ($k \approx 0.3 \times 10^{-11}$ cm³ s⁻¹). Thus, for PACALDs + OH, the total rate constant at 298 K can be estimated to be around 2 × 10⁻¹¹ cm³ s⁻¹, with aldehyde-H abstraction dominating:

PACALD1 + OH (+O₂)
$$\rightarrow$$
 HOOC(O)-C(CH3)=CH-C(O)OO[•] $k = 2 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$
PACALD2 + OH (+O₂) \rightarrow HOOC(O)-CH=C(CH3)-C(O)OO[•] $k = 2 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$

Thus, given the PACALD photolysis rate estimate of $J = 1 \times 10^{-3} \text{ s}^{-1}$ for an overhead sun, the OH + PACALD reaction should be minor, even for an [OH] as high as 10^7 cm^{-3} .

CONCLUSION: As a result, for the HPALD photolysis mechanism newly proposed here and the subsequent PACALD photochemistry, one can expect overall regeneration of up to 3 OH. It must be stressed that this would not be the case for the originally suggested HPALD photolysis mechanism (Peeters et al., PCCP 2009), as this does not result in the photolabile PACALDS.