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TABLES 

Table S-1. Expressions and energies of the complete (6 state) basis set. 

Symmetry of the eigenstates: „‟g‟‟ stands for gerade and „‟u‟‟ stands for 

ungerade. 
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Table S-2. Exact eigenvalues and eigenvectors of the reduced Hamiltonian Eq. (5). 
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Table S-3. Analytical expression of  11;  for the dimer and the trimer 

without electron-phonon coupling. Data concerning the dimer are from Ref. 32. 
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FIGURES 

 

Fig. S-1. Enlargment of   1111 ,,;3Im   in the vibrational region. 
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APPENDIXES 

 

APPENDIX 1 

Definition of the BOV modes 

We recognise four BOV modes in the system under investigation (3N-5, N=3), but we are only 

interested in the symmetric and antisymmetric stretching modes which modulate the distance 

between A and D. The modes are respectively written as follows: 
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where mi is the mass of the i-site, 21 mm2m   and qi are the spectroscopic mass-weighted 

coordinates. The subscripts “S” and “AS” to Q
e
 specify if the coordinate is symmetric or 

antisymetric with respect to the exchange of the sites 1 and 3. The BOV modes can also be treated 

as in-phase and out-of-phase combinations of a “left” and a “right” coordinate: 
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the sites 1 and 2 and the latter between the sites 2 and 3. In terms of dimensionless modes we finally 

have 
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Derivation of the vibronic coupling Hamiltonian HEMV 

The vibronic coupling Hamiltonian can be derived by considering the site-energies as linearly 

dependent on the SEV modes: to perform this expansion, Eq. (5) needs recasting in a more useful 

way, so that all site-energies are shown explicitly:  
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The first row is equivalent to the term  31 n̂n̂   since 3Acceptor
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HOMO  can be set to 

zero (as considered in the main text) without loss of generality. All site-energies are therefore 

developed in power series as a function of the corresponding SEV modes up to the first order: 
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Considering only the first row in (A1-5) and inserting the previous expressions, the following 

equation is obtained: 
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On the right hand side we then set   0
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Making use of the definitions in Eq. (10) and (13), the following equation can be written down: 
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where  
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EMVĤ  in Eq. (6).  

 

Derivation of the vibrational coupling Hamiltonian HEIP 

 

In this case we develop the charge transfer integrals (in the last two terms in Eq. (5) or in the last 

row in Eq. (A1-5)) in power series as a function of the BOV modes:  
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Notice that in the electronic Hamiltonian HĤ  the charge transfer integrals indicated with t are 

considered to be “unperturbed”: once the vibronic coupling is introduced, the unperturbed ones are 

still named t and the coupled ones are named t‟. 

The term DADAADAD T̂tT̂t   in Eq. (5) can be rewritten including the expansion (A1-12) and making 

use of the definitions (A1-3), (11) and (13): 
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Derivation of the vibronic Hamiltonian HV 
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It can be easily rewritten in the form of Eq. (8), by using the Eq. (10)-(12). 
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APPENDIX 2 

 

The expressions for the vibrational operators can be worked out by solving the Heisenberg equation 

of the motion: 
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The superscript H specifies that the operator is in the Heisenberg picture;  tÂH  represents any of 
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By substituting the expressions for  tĤH

EMV  and  tĤH

V  we have: 
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In the frequency domain (i.e. performing a Fourier transform on the previous equation) we have:  
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The calculation outlined above, can be repeated for all vibrational operators: in the following the 

expressions for all of them are summarized: 
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 )t(f is the Fourier transform of f(t);  are the damping parameters for the vibrational transitions.  

The Fourier transform and its inverse have been respectively performed with the relations 

      







 dtetz

2

1
tzz ti      (A2-14a) 

and  

Supplementary Material (ESI) for PCCP
This journal is © the Owner Societies 2010



 10 

      




 


 dez
2

1
ztz ti1    (A2-14b) 

The quantities F(), G() and D() are usually called propagators: the first and the second are 

respectively originated by the dependence of t and d on the BOV coordinates, whereas D() derives 

from the dependence of the site energies on the SEV modes. The subscripts of D(), A and D, 

specify if it has been expanded the Donor or the Acceptor site energy; the subscripts of F() and 

G(), + and –, indicate that we are dealing with the coupling with u+  and u-. 

 

 

Random phase approximation 

 

The RPA requires that vibrational operators are replaced by their expectation values. The 

expression for the expectation values in the time and in the frequency domain are: 
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APPENDIX 3 

 

We are interested in comparing  0

Tĥ  and Hĥ ; considering the six level system the expressions are 

the following 
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It is now clear that  0

Tĥ  is different from Hĥ  and then their eigenvectors are not the same. However, 

exploiting the relation 2n̂n̂n̂n̂N̂ 3212   the equation (A3-2) can be recast in the form 
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Thus, the eigenvectors (and the eigenvalues) of  0

Tĥ  can be formally derived from that ones of Hĥ  

by swapping the parameters  and t with   and t  . 
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APPENDIX 4 

 

First of all, it is worth working out some relations in the time and frequency domain for a general 

function z(t) which depends on the electrical field E(t). The power series expansion of z(t) results 
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The Fourier transform and its inverse have been defined in Eq. (A2-14). 
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The solution of the equation of motion for the density operator, Eq. (19) 

 

Let‟s first recast )t(ĥT  in Eq. 19 as the sum of two components: 

   tf̂tĥ)t(ĥT       (A4-9) 

where  tĥ  collects all the terms that do not show any explicit dependence on the electrical field 

and  tf̂  collects the others. 

Eq. (19) is solved in a perturbative way by expanding the density matrix in a power series of E: 

          ...tˆtˆˆtˆ 210       (A4-10) 

The Hamiltonian  tĥT  contains  t̂  in the expectation values of the vibrational operators which 

are consequently expanded in power series: 

     
...ÔÔÔÔ
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      (A4-11) 

where 
 

  n
n

ˆÔTrÔ   and Ô  is any of the vibrational operators. 

Working in the Liouville space instead of the Hilbert one, and substituting the expansions in the 

electrical field of Eq. (A4-9) into the equation of motion, Eq. (19), the following expressions for the 

first three orders are obtained: 
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                 03122

21133

ˆ,tf̂ˆ,tf̂tĥ
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 L
    (A4-14) 

Solution of Eq. (A4-12) provides  1̂  and consequently any first order term: inserting it into Eq. 

(A4-13), second order quantities can be worked out and so on
. 
Further detail is given in Ref. 32: 

here we just remind that to solve previous Equations we need to perform a Fourier transform and 

therefore we get as a solution the density operator in the frequency domain. 
32

 We remind that the 

superscript in round brackets at the top of operators and expectation values correspond to the order 

in electrical field. 
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L is the Liouville operator and it is defined, in the frequency domain, as 
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The expression of hT at the first three orders. 

Here we show the Fourier components for  tĥ  and  tf̂  up to the third order. The ones belonging 

to )t(ĥT  can be calculated from Eq. (A4-9). Tĥ  in the frequency and time domain can be 

reconstructed from Eq. (A4-3)-(A4-5) and Eq. (A4-6)-(A4-8) respectively. 
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22

Rhe

T̂;N̂E;N̂EE0G
22

g
,;0f

~̂

1

11

1

11
mz

1

11

1

1111

2

11

111









 

(A4-23) 

 

       
 

 
 



















 






 

N̂E,;2û
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In the following, the expectation values for the BOV vibrational operators in the frequency domain 

are shown, in explicit form, from the first to the third order in the electrical field: 
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APPENDIX 5 

 

Making use of the response theory, the following expressions are achieved for the polarizabilities 

and hyperpolarizabilities
32
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To write the expressions for the polarizabilities more than one convention is found in the 

literature. We followed the same convention as in the textbook by Butcher and Cotter.
35

 The 

electrical field is defined in Eq. (A4-2). 

The Fourier components of  tR̂  at the first and third order are: 
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APPENDIX 6 

 

TPA is often expressed in terms of absorption cross section, 2:  

2

1

2 a
N





      (A6-1) 

 

where N is the number of molecules per unit volume and  
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η0 is the linear refractive index and c the speed of light. 
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