Supplementary Information

Holstein-Peirls-Hubbard Trimer as a model for quadrupolar two-photon absorbing dyes

Robertino Pilot ${ }^{[\mathrm{a}]}$ and Renato Bozio ${ }^{[\mathrm{a}]}$

[a] Dr. Robertino Pilot

Consorzio INSTM, UdR Padova
Department of Chemical Sciences
Via Marzolo 1, 35131 Padova (Italy)
Fax: +39 0498275135
E-Mail: roberto.pilot@unipd.it

Prof. Renato Bozio
Consorzio INSTM, UdR Padova
Department of Chemical Sciences
Via Marzolo 1, 35131 Padova (Italy)
Fax: +39 0498275135
E-Mail: renato.bozio@unipd.it

TABLES

Table S-1. Expressions and energies of the complete (6 state) basis set. Symmetry of the eigenstates: ' g '' stands for gerade and ' u '' stands for ungerade.

Basis State	Energy	Eigenstate	Symmetry
$\left\|\mathrm{S}_{1}\right\rangle=\hat{\mathrm{a}}_{2 \uparrow}^{+} \hat{\mathrm{a}}_{2 \downarrow}^{+}\|0\rangle$	U_{d}	$\|1\rangle$	g
$\left.\left\|\mathrm{S}_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\hat{\mathrm{a}}_{1 \uparrow}^{+} \hat{\mathrm{a}}_{2 \downarrow}^{+}+\hat{\mathrm{a}}_{2 \uparrow}^{+} \hat{\mathrm{a}}_{1 \downarrow}^{+}\right] 0\right\rangle$	ε	$\|2\rangle$	u
$\left.\left\|\mathrm{S}_{3}\right\rangle=\frac{1}{\sqrt{2}}\left[\hat{a}_{3 \uparrow}^{+} \hat{\mathrm{a}}_{2 \downarrow}^{+}+\hat{\mathrm{a}}_{2 \uparrow}^{+} \hat{\mathrm{a}}_{3 \downarrow}^{+}\right] 0\right\rangle$	ε	$\|3\rangle$	g
$\left.\left\|\mathrm{S}_{4}\right\rangle=\frac{1}{\sqrt{2}}\left[\hat{\mathrm{a}}_{1 \uparrow}^{+} \hat{\mathrm{a}}_{3 \downarrow}^{+}+\hat{\mathrm{a}}_{3 \uparrow}^{+} \hat{\mathrm{a}}_{1 \downarrow}^{+}\right] 0\right\rangle$	2ε	$\|4\rangle$	g
$\left\|\mathrm{S}_{5}\right\rangle=\hat{\mathrm{a}}_{3 \uparrow}^{+} \hat{\mathrm{a}}_{3 \downarrow}^{+}\|0\rangle$	$2 \varepsilon+\mathrm{U}_{\mathrm{a}}$	$\|5\rangle$	u
$\left\|\mathrm{S}_{6}\right\rangle=\hat{\mathrm{a}}_{1 \uparrow}^{+} \hat{\mathrm{a}}_{1 \downarrow}^{+}\|0\rangle$	$2 \varepsilon+\mathrm{U}_{\mathrm{a}}$	$\|6\rangle$	g

Table S-2. Exact eigenvalues and eigenvectors of the reduced Hamiltonian Eq. (5).

Eigenvector $^{\mathrm{a}}$	Eigenvalue $^{\mathrm{b}}$	Transition Energy $^{\mathrm{b}}$
$\|1\rangle=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}\left\|\mathrm{S}_{\mathrm{i}}\right\rangle$	$\mathrm{E}_{1}=\frac{\left(\mathrm{U}_{\mathrm{d}}+\varepsilon\right)-\sqrt{\Delta^{2}+16 \mathrm{t}^{2}}}{2}$	$\mathrm{E}_{21}=\frac{\Delta+\sqrt{\Delta^{2}+16 \mathrm{t}^{2}}}{2}$
$\|2\rangle=\sum_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}\left\|\mathrm{S}_{\mathrm{i}}\right\rangle$	$\mathrm{E}_{2}=\varepsilon$	$\mathrm{E}_{32}=\frac{-\Delta+\sqrt{\Delta^{2}+16 \mathrm{t}^{2}}}{2}$
$\|3\rangle=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\left\|\mathrm{S}_{\mathrm{i}}\right\rangle$	$\mathrm{E}_{3}=\frac{\left(\mathrm{U}_{\mathrm{d}}+\varepsilon\right)+\sqrt{\Delta^{2}+16 \mathrm{t}^{2}}}{2}$	$\mathrm{E}_{31}=\sqrt{\Delta^{2}+16 \mathrm{t}^{2}}$

${ }^{\text {a }}$ Eigenvectors coefficients:
$\mathrm{a}_{1}=\frac{\mathrm{E}_{21}}{\sqrt{\mathrm{E}_{21}^{2}+4 \mathrm{t}^{2}}}$
$\mathrm{b}_{1}=0$
$c_{1}=\frac{-E_{32}}{\sqrt{\mathrm{E}_{32}^{2}+4 \mathrm{t}^{2}}}$
$a_{2}=a_{3}=\frac{\sqrt{2} t}{\sqrt{E_{21}^{2}+4 t^{2}}}$
$\mathrm{b}_{2}=-\mathrm{b}_{3}=\frac{1}{\sqrt{2}}$
$c_{2}=c_{3}=\frac{\sqrt{2} t}{\sqrt{E_{32}^{2}+4 t^{2}}}$
${ }^{\mathrm{b}} \Delta=\varepsilon-\mathrm{U}_{\mathrm{d}}$

Table S-3. Analytical expression of $\alpha\left(-\omega_{1} ;+\omega_{1}\right)$ for the dimer and the trimer without electron-phonon coupling. Data concerning the dimer are from Ref. 32.

DIMER
 TRIMER

Level Diagram

Expression for α

$$
\alpha\left(-\omega_{1} ; \omega_{1}\right)=\frac{-2}{\varepsilon_{0}} \frac{\mathrm{R}_{12}^{2} \mathrm{E}_{21}^{2}}{\left(\hbar \omega_{1}+\mathrm{i} \Gamma\right)^{2}-\mathrm{E}_{21}^{2}}
$$

Transition Dipoles

$$
\mathrm{R}_{12}^{2}=\left(\mathrm{edc}_{1}\right)^{2} \quad \mathrm{R}_{12}^{2}=\left(\mathrm{eda}_{2} \mathrm{~b}_{2}\right)^{2}
$$

Transition energies

$$
\begin{array}{ll}
\mathrm{E}_{21}=\frac{\mathrm{U}+\sqrt{\mathrm{U}^{2}+16 \mathrm{t}^{2}}}{2} & \mathrm{E}_{21}=\frac{\Delta+\sqrt{\Delta^{2}+16 \mathrm{t}^{2}}}{2} \\
\mathrm{E}_{32}=\frac{-\mathrm{U}+\sqrt{\mathrm{U}^{2}+16 \mathrm{t}^{2}}}{2} & \mathrm{E}_{32}=\frac{-\Delta+\sqrt{\Delta^{2}+16 \mathrm{t}^{2}}}{2}
\end{array}
$$

Coefficient Expressions

$$
c_{1}=\frac{E_{32}}{\sqrt{E_{32}^{2}+4 t^{2}}} \quad a_{2} b_{2}=\frac{t}{\sqrt{E_{21}^{2}+4 t^{2}}}
$$

FIGURES

Fig. S-1. Enlargment of $\operatorname{Im}\left[\gamma\left(-3 \omega_{1} ; \omega_{1}, \omega_{1}, \omega_{1}\right)\right]$ in the vibrational region.

APPENDIXES

APPENDIX 1

Definition of the BOV modes

We recognise four BOV modes in the system under investigation ($3 \mathrm{~N}-5, \mathrm{~N}=3$), but we are only interested in the symmetric and antisymmetric stretching modes which modulate the distance between A and D . The modes are respectively written as follows:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{S}}^{\mathrm{BOV}}=\frac{1}{\sqrt{2}}\left(\mathrm{q}_{3}-\mathrm{q}_{1}\right) \quad \mathrm{Q}_{\mathrm{AS}}^{\mathrm{BOV}}=\frac{1}{\sqrt{2 \mathrm{~m}}}\left(\sqrt{\mathrm{~m}_{1}} \mathrm{q}_{3}-2 \sqrt{\mathrm{~m}_{2}} \mathrm{q}_{2}+\sqrt{\mathrm{m}_{1}} \mathrm{q}_{1}\right) \tag{A1-1}
\end{equation*}
$$

where m_{i} is the mass of the i -site, $\mathrm{m}=2 \mathrm{~m}_{1}+\mathrm{m}_{2}$ and q_{i} are the spectroscopic mass-weighted coordinates. The subscripts " S " and "AS" to Q^{e} specify if the coordinate is symmetric or antisymetric with respect to the exchange of the sites 1 and 3 . The BOV modes can also be treated as in-phase and out-of-phase combinations of a "left" and a "right" coordinate:

$$
\begin{equation*}
Q_{s}^{\text {Bov }}=\frac{1}{\sqrt{2}}\left(Q_{L}^{\text {Bov }}+Q_{R}^{\text {Bov }}\right) \quad Q_{A s}^{\text {Bov }}=\frac{1}{\sqrt{2}} \sqrt{\frac{m_{1}}{m}}\left(Q_{L}^{\text {Bov }}-Q_{R}^{\text {Bov }}\right) \tag{A1-2}
\end{equation*}
$$

where $Q_{L}^{\text {BOv }}=\sqrt{\frac{m_{2}}{m_{1}}} q_{2}-q_{1}$ and $Q_{R}^{\text {BOv }}=q_{3}-\sqrt{\frac{m_{2}}{m_{1}}} q_{2}$: the former affects only the distance between the sites 1 and 2 and the latter between the sites 2 and 3 . In terms of dimensionless modes we finally have

$$
\begin{array}{ll}
\mathrm{u}_{+} \equiv \mathrm{u}_{\mathrm{S}}=\frac{1}{\sqrt{2}}\left(\mathrm{u}_{\mathrm{L}}+\mathrm{u}_{\mathrm{R}}\right) & \mathrm{u}_{-} \equiv \mathrm{u}_{\mathrm{AS}}=\frac{1}{\sqrt{2}} \mathrm{R}_{\mathrm{m}}\left(\mathrm{u}_{\mathrm{L}}-\mathrm{u}_{\mathrm{R}}\right) \\
\mathrm{u}_{\mathrm{L}, \mathrm{R}}=\sqrt{\frac{2 \omega_{+}}{\hbar}} \mathrm{Q}_{\mathrm{L}, \mathrm{R}}^{\mathrm{BOV}} & \mathrm{R}_{\mathrm{m}}=\sqrt{\frac{\omega_{-}}{\omega_{+}}} \sqrt{\frac{\mathrm{m}_{1}}{\mathrm{~m}}} \tag{A1-4}
\end{array}
$$

Derivation of the vibronic coupling Hamiltonian $\mathrm{H}_{\text {EMV }}$

The vibronic coupling Hamiltonian can be derived by considering the site-energies as linearly dependent on the SEV modes: to perform this expansion, Eq. (5) needs recasting in a more useful way, so that all site-energies are shown explicitly:

$$
\begin{align*}
\hat{\mathrm{H}}_{\mathrm{H}}=\varepsilon_{\text {LUMO }}^{\text {Acceptor } 1} \hat{\mathrm{n}}_{1} & +\varepsilon_{\text {LUMO }}^{\text {Acceptor } 3} \hat{\mathbf{n}}_{3}+\varepsilon_{\mathrm{HOMO}}^{\text {Donor }} \hat{\mathbf{n}}_{2} \\
& +\mathrm{U}_{\mathrm{d}} \hat{\mathrm{n}}_{2 \uparrow} \hat{\mathrm{n}}_{2 \downarrow}+\mathrm{U}_{\mathrm{a}}\left(\hat{\mathrm{n}}_{1 \uparrow} \hat{\mathrm{n}}_{1 \downarrow}+\hat{\mathrm{n}}_{3 \uparrow \uparrow} \hat{\mathrm{n}}_{3 \downarrow}\right) \tag{A1-5}\\
& -\mathrm{t}_{\mathrm{AD}} \hat{\mathrm{~T}}_{\mathrm{AD}}-\mathrm{t}_{\mathrm{DA}} \hat{\mathrm{~T}}_{\mathrm{DA}}
\end{align*}
$$

The first row is equivalent to the term $\varepsilon\left(\hat{\mathrm{n}}_{1}+\hat{\mathrm{n}}_{3}\right)$ since $\varepsilon_{\text {LUMO }}^{\text {Acceptor 1 }}=\varepsilon_{\text {LUMO }}^{\text {Acceptor } 3}$ and $\varepsilon_{\text {HOMO }}^{\text {Donor }}$ can be set to zero (as considered in the main text) without loss of generality. All site-energies are therefore developed in power series as a function of the corresponding SEV modes up to the first order:

$$
\begin{gather*}
\varepsilon_{\text {LUMO }}^{\text {Acceptor } 1}=\left(\varepsilon_{\text {LUMO }}^{\text {Acceptor } 1}\right)^{0}+\sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\text {LUMO }}^{\text {Acceptor } 1}}{\partial \mathrm{Q}_{\mathrm{i} 1}}\right)_{0} \mathrm{Q}_{\mathrm{i} 1} \tag{A1-6}\\
\varepsilon_{\text {LUMO }}^{\text {Acceptor 3 }}=\left(\varepsilon_{\text {LUMO }}^{\text {Aceptor } 3}\right)^{0}+\sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\text {LUMO }}^{\text {Acceptor } 3}}{\partial \mathrm{Q}_{\mathrm{i} 3}}\right)_{0}^{\mathrm{Q}_{\mathrm{i} 3}} \tag{A1-7}\\
\varepsilon_{\text {HoMO }}^{\text {Donor }}=\left(\varepsilon_{\text {HOMO }}^{\text {Donor }}\right)^{0}+\sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\mathrm{D}}}{\mathrm{Q}_{\mathrm{i} 2}}\right) \mathrm{Q}_{\mathrm{i} 2} \tag{A1-8}
\end{gather*}
$$

Considering only the first row in (A1-5) and inserting the previous expressions, the following equation is obtained:
$\varepsilon_{\text {LUMO }}^{\text {Acceptor } 1} \hat{\mathbf{n}}_{1}+\varepsilon_{\text {LUMO }}^{\text {Acceptor } 3} \hat{\mathbf{n}}_{3}+\varepsilon_{\text {HOMO }}^{\text {Donor }} \hat{\mathbf{n}}_{2}=$
$\left(\left(\varepsilon_{\text {LUMO }}^{\text {Aceptor } 1}\right)^{0}+\sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\text {LUMO }}^{\text {Acceptor } 1}}{\partial \mathrm{Q}_{\mathrm{i} 1}}\right)_{0}^{\text {A. }} \mathrm{Q}_{\mathrm{i} 1}\right) \hat{\mathrm{n}}_{1}+\left(\left(\varepsilon_{\text {LUMO }}^{\text {Acceptor 3 }}\right)^{0}+\sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\text {LMO }}^{\text {Acceptor } 3}}{\partial \mathrm{Q}_{\mathrm{i} 3}}\right)_{0}^{\text {A. }} \mathrm{Q}_{\mathrm{i} 3}\right) \hat{\mathrm{n}}_{3}+\left(\left(\varepsilon_{\text {HOMO }}^{\text {Donor }}\right)^{0}+\sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\mathrm{D}}}{\mathrm{Q}_{\mathrm{iD}}}\right) \mathrm{Q}_{\mathrm{i} 2}\right) \hat{\mathrm{n}}_{2}$

On the right hand side we then set $\left(\varepsilon_{\text {HOMO }}^{\text {Donor }}\right)^{0}=0$ and define $\left(\varepsilon_{\text {LUMO }}^{\text {Acepport }}\right)^{0}-\left(\varepsilon_{\text {HoмO }}^{\text {Donor }}\right)^{0}=\varepsilon$, so that we obtain:

$$
\begin{align*}
& \varepsilon_{\text {LUMO }}^{\text {Acceptor } 1} \hat{\mathrm{n}}_{1}+\varepsilon_{\text {LUMO }}^{\text {Acceptor } 3} \hat{\mathrm{n}}_{3}+\varepsilon_{\text {HOMO }}^{\text {Donor }} \hat{\mathrm{n}}_{2}= \\
& \quad \varepsilon\left(\hat{\mathrm{n}}_{1}+\hat{\mathrm{n}}_{3}\right)+\hat{\mathrm{n}}_{1} \sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\text {LUMO }}^{\text {Acceptor } 1}}{\partial \mathrm{Q}_{\mathrm{i} 1}}\right) \mathrm{Q}_{\mathrm{i} 1}+\hat{\mathrm{n}}_{3} \sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\text {LUMO }}^{\text {Acceptor } 3}}{\partial \mathrm{Q}_{\mathrm{i} 3}}\right)_{0} \mathrm{Q}_{\mathrm{i} 3}+\hat{\mathrm{n}}_{2} \sum_{\mathrm{i}}\left(\frac{\partial \varepsilon_{\text {HoMO }}^{\text {Donor }}}{\mathrm{Q}_{\mathrm{iD}}}\right) \mathrm{Q}_{\mathrm{i} 2} \tag{A1-10}
\end{align*}
$$

Making use of the definitions in Eq. (10) and (13), the following equation can be written down:

$$
\begin{equation*}
\varepsilon_{\text {LUMO }}^{\text {Acceptor } 1} \hat{n}_{1}+\varepsilon_{\text {LUMO }}^{\text {Acceptor } 3} \hat{\mathbf{n}}_{3}+\varepsilon_{\text {HOMO }}^{\text {Donor }} \hat{\mathbf{n}}_{2}=\varepsilon\left(\hat{\mathrm{n}}_{1}+\hat{\mathrm{n}}_{3}\right)+\sum_{\mathrm{i}}\left\{\frac{\mathrm{~g}_{\mathrm{iA}}}{\sqrt{2}}\left[\mathrm{R}_{\mathrm{i}+} \hat{\mathrm{N}}^{+}+\mathrm{R}_{\mathrm{i}-} \hat{N}^{-}\right]+\mathrm{g}_{\mathrm{iD}} \mathrm{Q}_{\mathrm{i} 2} \hat{\mathrm{n}}_{2}\right\} \tag{A1-11}
\end{equation*}
$$

where $\sum_{i}\left\{\frac{g_{i A}}{\sqrt{2}}\left[R_{i+} \hat{N}^{+}+R_{i-} \hat{N}^{-}\right]+g_{i D} Q_{i 2} \hat{\mathrm{n}}_{2}\right\}$ is the definition of $\hat{\mathrm{H}}_{\mathrm{ENv}}$ in Eq. (6).

Derivation of the vibrational coupling Hamiltonian $H_{\text {EIP }}$

In this case we develop the charge transfer integrals (in the last two terms in Eq. (5) or in the last row in Eq. (A1-5)) in power series as a function of the BOV modes:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{AD}}^{\prime}=\mathrm{t}_{\mathrm{AD}}+\left(\frac{\partial \mathrm{t}_{\mathrm{AD}}}{\partial \mathrm{u}_{\mathrm{L}}}\right)_{0} \mathrm{u}_{\mathrm{L}} \text { and } \mathrm{t}_{\mathrm{DA}}^{\prime}=\mathrm{t}_{\mathrm{DA}}+\left(\frac{\partial \mathrm{t}_{\mathrm{DA}}}{\partial \mathrm{u}_{\mathrm{R}}}\right)_{0} \mathrm{u}_{\mathrm{R}} \tag{A1-12}
\end{equation*}
$$

Notice that in the electronic Hamiltonian $\hat{\mathrm{H}}_{\mathrm{H}}$ the charge transfer integrals indicated with t are considered to be "unperturbed": once the vibronic coupling is introduced, the unperturbed ones are still named t and the coupled ones are named t '.
The term $t_{A D} \hat{T}_{A D}+t_{D A} \hat{T}_{D A}$ in Eq. (5) can be rewritten including the expansion (A1-12) and making use of the definitions (A1-3), (11) and (13):

$$
\begin{equation*}
\mathrm{t}_{\mathrm{AD}}^{\prime} \hat{\mathrm{T}}_{\mathrm{AD}}+\mathrm{t}_{\mathrm{DA}}^{\prime} \hat{\mathrm{T}}_{\mathrm{DA}}=\mathrm{t}_{\mathrm{AD}} \hat{\mathrm{~T}}_{\mathrm{AD}}+\mathrm{t}_{\mathrm{DA}} \hat{\mathrm{~T}}_{\mathrm{DA}}-\frac{\mathrm{g}}{\sqrt{2}}\left[\mathrm{u}_{+} \hat{\mathrm{T}}^{+}+\mathrm{R}_{\mathrm{m}} \mathrm{u}_{-} \hat{\mathrm{T}}^{-}\right] \tag{A1-13}
\end{equation*}
$$

where $\frac{g}{\sqrt{2}}\left[u_{+} \hat{T}^{+}+R_{m} u_{-} \hat{T}^{-}\right]$is the definition of $\hat{H}_{\text {EIP }}$ in Eq. (7).

Derivation of the vibronic Hamiltonian H_{V}

Starting from the vibrational Hamiltonian:

$$
\begin{equation*}
\hat{\mathrm{H}}_{\mathrm{v}}=\sum_{\mathrm{i}}\left\{\frac{\hbar \omega_{\mathrm{iA}}}{4}\left[\left(\mathrm{Q}_{\mathrm{il}}^{2}+\mathrm{P}_{\mathrm{il}}^{2}\right)+\left(\mathrm{Q}_{\mathrm{i} 3}^{2}+\mathrm{P}_{\mathrm{i} 3}^{2}\right)\right]+\frac{\hbar \omega_{\mathrm{iD}}}{4}\left[\mathrm{P}_{\mathrm{i} 2}^{2}+\mathrm{Q}_{\mathrm{i} 2}^{2}\right]\right\} \tag{A1-14}
\end{equation*}
$$

It can be easily rewritten in the form of Eq. (8), by using the Eq. (10)-(12).

APPENDIX 2

The expressions for the vibrational operators can be worked out by solving the Heisenberg equation of the motion:

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\mathrm{~d} \hat{\mathrm{~A}}^{\mathrm{H}}(\mathrm{t})}{\mathrm{dt}}=\left[\hat{\mathrm{A}}^{\mathrm{H}}(\mathrm{t}), \hat{\mathrm{H}}^{\mathrm{H}}(\mathrm{t})\right] \tag{A2-1}
\end{equation*}
$$

The superscript H specifies that the operator is in the Heisenberg picture; $\hat{\mathrm{A}}^{\mathrm{H}}(\mathrm{t})$ represents any of the vibrational operators or the corresponding momenta. $\hat{H}^{H}(t)$ is the Heisenberg representation of the total Hamiltonian defined in Eq. (1). As an example, the equation of motion for $\hat{\mathrm{R}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})$ is worked out in the following: Eq. (A2-1) is solved for $\hat{A}_{i+1}^{H}(t)=\hat{S}_{i+}^{H}(t)$ providing:

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\mathrm{~d} \hat{S}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})}{\mathrm{dt}}=\left[\hat{\mathrm{S}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t}), \hat{\mathrm{H}}^{\mathrm{H}}(\mathrm{t})\right]=\left[\hat{\mathrm{S}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t}), \hat{\mathrm{H}}_{\mathrm{EMV}}^{\mathrm{H}}(\mathrm{t})\right]+\left[\hat{\mathrm{S}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t}), \hat{\mathrm{H}}_{\mathrm{V}}^{\mathrm{H}}(\mathrm{t})\right] \tag{A2-2}
\end{equation*}
$$

By substituting the expressions for $\hat{\mathrm{H}}_{\text {EMV }}^{\mathrm{H}}(\mathrm{t})$ and $\hat{\mathrm{H}}_{V}^{\mathrm{H}}(\mathrm{t})$ we have:

$$
\begin{equation*}
\hbar \frac{\mathrm{d} \hat{S}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})}{\mathrm{dt}}=-\sqrt{2} \mathrm{~g}_{\mathrm{i} \mathrm{~A}}\left[\hat{\mathrm{~N}}^{+\mathrm{H}}(\mathrm{t})\right]-\hbar \omega_{\mathrm{iA}} \hat{\mathrm{R}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t}) \tag{A2-3}
\end{equation*}
$$

The relation $\left[\left(\hat{R}_{i+}^{H}(\mathrm{t})\right)^{2}, \hat{\mathrm{~S}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})\right]=4 \mathrm{i} \hat{\mathrm{R}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})$ has been used. Finally, considering the expression $\frac{1}{\omega_{i A}} \frac{d \hat{R}_{i+}^{H}(\mathrm{t})}{\mathrm{dt}}=\hat{\mathrm{R}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})$, we achieve in the time domain:

$$
\begin{equation*}
\hat{\tilde{\mathrm{R}}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})+\omega_{\mathrm{iA}}^{2} \hat{\dot{\mathrm{R}}}_{\mathrm{i}+}^{\mathrm{H}}(\mathrm{t})=\frac{-\sqrt{2} \mathrm{~g}_{\mathrm{iA}} \omega_{\mathrm{iA}}}{\hbar} \hat{\mathrm{~N}}^{+\mathrm{H}}(\mathrm{t}) \tag{A2-4}
\end{equation*}
$$

In the frequency domain (i.e. performing a Fourier transform on the previous equation) we have:

$$
\begin{equation*}
\hat{\mathbf{R}}_{\mathrm{i}+}^{\mathrm{H}}(\omega)=\mathrm{D}_{\mathrm{A}}^{\mathrm{i}}(\omega) \hat{\mathrm{N}}^{+\mathrm{H}}(\omega) \tag{A2-5}
\end{equation*}
$$

Where $D_{A}^{i}(\omega)=\frac{-\sqrt{2} g_{i A} \omega_{i A}}{\hbar\left[\omega_{i A}^{2}-\left(\omega+i \gamma_{A}\right)^{2}\right]^{2}}$.
The calculation outlined above, can be repeated for all vibrational operators: in the following the expressions for all of them are summarized:

$$
\begin{align*}
& \hat{R}_{i+}^{H}(\omega)=D_{A}^{i}(\omega) \hat{N}^{+H}(\omega) \quad \hat{Q}_{i 2}^{H}(\omega)=D_{D}^{i}(\omega) \hat{n}_{2}^{H}(\omega) \tag{A2-6}\\
& \hat{R}_{i+}^{H}(\omega)=D_{A}^{i}(\omega) \hat{N}^{+H}(\omega) \quad \hat{R}_{i-}^{H}(\omega)=D_{A}^{i}(\omega) \hat{N}^{-H}(\omega) \tag{A2-7}\\
& \hat{\mathbf{u}}_{-}^{H}(\omega)=F_{-}(\omega) \hat{T}^{-H}(\omega)+G_{-}(\omega) \mathfrak{J}\left\{E(t) \hat{N}^{+H}(t)\right\} \tag{A2-8}\\
& \hat{u}_{+}^{H}(\omega)=F_{+}(\omega) \hat{T}^{+H}(\omega)+G_{+}(\omega) \mathfrak{J}\left\{E(t) \hat{N}^{-H}(t)\right\} \tag{A2-9}
\end{align*}
$$

where

$$
\begin{array}{cc}
D_{D}^{i}(\omega)=\frac{-2 g_{i D} \omega_{i D}}{\hbar\left[\omega_{i D}^{2}-\left(\omega+i \gamma_{D}\right)^{2}\right]} & D_{A}^{i}(\omega)=\frac{-\sqrt{2} g_{i A} \omega_{i A}}{\hbar\left[\omega_{i A}^{2}-\left(\omega+i \gamma_{A}\right)^{2}\right]} \\
F_{-}(\omega)=\frac{R_{m} \sqrt{2} g \omega_{-}}{\hbar\left[\omega_{-}^{2}-(\omega+i \gamma)^{2}\right]} & \mathrm{F}_{+}(\omega)=\frac{\sqrt{2} g \omega_{+}}{\hbar\left[\omega_{+}^{2}-(\omega+i \gamma)^{2}\right]} \\
G_{-}(\omega)=\frac{-e \sqrt{2} h_{z} \omega_{-} R_{m}}{\hbar\left[\omega_{-}^{2}-(\omega+i \gamma)^{2}\right]} & G_{+}(\omega)=\frac{e \sqrt{2} h_{z} \omega_{+}}{\hbar\left[\omega_{+}^{2}-(\omega+i \gamma)^{2}\right]} \\
D_{D}(\omega)=\sum_{i} g_{i D} D_{D}^{i}(\omega) & D_{A}(\omega)=\sum_{i} \frac{g_{i A}}{\sqrt{2}} D_{A}^{i}(\omega)
\end{array}
$$

$\Im\{f(t)\}$ is the Fourier transform of $f(t) ; \gamma$ are the damping parameters for the vibrational transitions. The Fourier transform and its inverse have been respectively performed with the relations

$$
\begin{equation*}
\mathrm{z}(\omega)=\mathfrak{J}\{\mathrm{z}(\mathrm{t})\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{z}(\mathrm{t}) \mathrm{e}^{\mathrm{i} \omega \mathrm{t}} \mathrm{dt} \tag{A2-14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{z}(\mathrm{t})=\mathfrak{J}^{-1}\{\mathrm{z}(\omega)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{z}(\omega) \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}} \mathrm{~d} \omega \tag{A2-14b}
\end{equation*}
$$

The quantities $F(\omega), G(\omega)$ and $D(\omega)$ are usually called propagators: the first and the second are respectively originated by the dependence of t and d on the BOV coordinates, whereas $D(\omega)$ derives from the dependence of the site energies on the SEV modes. The subscripts of $D(\omega)$, A and D, specify if it has been expanded the Donor or the Acceptor site energy; the subscripts of $F(\omega)$ and $G(\omega),+$ and - , indicate that we are dealing with the coupling with u_{+}and $u_{.}$.

Random phase approximation

The RPA requires that vibrational operators are replaced by their expectation values. The expression for the expectation values in the time and in the frequency domain are:

$$
\begin{align*}
& \left\langle\hat{\mathrm{Q}}_{\mathrm{i} 2}(\omega)\right\rangle=\mathrm{D}_{\mathrm{D}}^{\mathrm{i}}(\omega)\left\langle\hat{\mathrm{n}}_{2}(\omega)\right\rangle \tag{A2-15}\\
& \left\langle\hat{\mathbf{R}}_{\mathrm{i}+}(\omega)\right\rangle=\mathrm{D}_{\mathrm{A}}^{\mathrm{i}}(\omega)\left\langle\hat{\mathbf{N}}^{+}(\omega)\right\rangle \quad\left\langle\hat{\mathrm{R}}_{\mathrm{i}-}(\omega)\right\rangle=\mathrm{D}_{\mathrm{A}}^{\mathrm{i}}(\omega)\left\langle\hat{\mathrm{N}}^{-}(\omega)\right\rangle \tag{A2-16}\\
& \left\langle\hat{\mathrm{u}}_{-}(\omega)\right\rangle=\mathrm{F}_{-}(\omega)\left\langle\hat{\mathrm{T}}^{-}(\omega)\right\rangle+\mathrm{G}_{-}(\omega) \mathfrak{J}\left\{\mathrm{E}(\mathrm{t})\left\langle\hat{\mathrm{N}}^{+}(\mathrm{t})\right\rangle\right\} \tag{A2-17}\\
& \left\langle\hat{\mathrm{u}}_{+}(\omega)\right\rangle=\mathrm{F}_{+}(\omega)\left\langle\hat{\mathrm{T}}^{+}(\omega)\right\rangle+\mathrm{G}_{+}(\omega) \mathfrak{I}\left\{\mathrm{E}(\mathrm{t})\left\langle\hat{\mathrm{N}}^{-}(\mathrm{t})\right\rangle\right\} \tag{A2-18}\\
& \left\langle\hat{\mathrm{Q}}_{\mathrm{i} 2}(\mathrm{t})\right\rangle=\mathfrak{J}^{-1}\left\{\mathrm{D}_{\mathrm{D}}^{\mathrm{i}}(\omega)\left\langle\hat{\mathrm{n}}_{2}(\omega)\right\rangle\right\} \tag{A2-19}\\
& \left\langle\hat{\mathbf{R}}_{\mathrm{i}+}(\mathrm{t})\right\rangle=\mathfrak{J}^{-1}\left\{\mathrm{D}_{\mathrm{A}}^{\mathrm{i}}(\omega)\left\langle\hat{\mathrm{N}}^{+}(\omega)\right\rangle\right\} \quad\left\langle\hat{\mathrm{R}}_{\mathrm{i}-}(\mathrm{t})\right\rangle=\mathfrak{J}^{-1}\left\{\mathrm{D}_{\mathrm{A}}^{\mathrm{i}}(\omega)\left\langle\hat{\mathrm{N}}^{-}(\omega)\right\rangle\right\} \tag{A2-20}\\
& \left.\left\langle\hat{u}_{-}(\mathrm{t})\right\rangle=\mathfrak{J}^{-1}\left\{\mathrm{~F}_{-}(\omega)\left\langle\hat{\mathrm{T}}^{+}(\omega)\right\rangle\right\}+\mathfrak{J}^{-1}\left\{\mathrm{G}_{-}(\omega) \mathfrak{J} \mid \mathrm{E}(\mathrm{t})\left\langle\hat{\mathrm{N}}^{-}(\mathrm{t})\right\rangle\right\}\right\} \tag{A2-21}\\
& \left\langle\hat{u}_{+}(\mathrm{t})\right\rangle=\mathfrak{J}^{-1}\left\{\mathrm{~F}_{+}(\omega)\left\langle\hat{\mathrm{T}}^{+}(\omega)\right\rangle\right\}+\mathfrak{J}^{-1}\left\{\mathrm{G}_{+}(\omega) \mathfrak{J}\left\{\mathrm{E}(\mathrm{t})\left\langle\hat{\mathrm{N}}^{-}(\mathrm{t})\right\rangle\right\}\right\} \tag{A2-22}
\end{align*}
$$

APPENDIX 3

We are interested in comparing $\hat{\mathrm{h}}_{\mathrm{T}}^{(0)}$ and $\hat{\mathrm{h}}_{\mathrm{H}}$; considering the six level system the expressions are the following

$$
\begin{align*}
& \hat{\mathrm{h}}_{\mathrm{H}}=\varepsilon\left(\hat{\mathrm{n}}_{1}+\hat{\mathrm{n}}_{3}\right)+\mathrm{U}_{\mathrm{d}} \hat{\mathrm{n}}_{2 \uparrow} \hat{\mathrm{n}}_{2 \downarrow}+\mathrm{U}_{\mathrm{a}}\left(\hat{\mathrm{n}}_{1 \uparrow} \hat{\mathrm{n}}_{1 \downarrow}+\hat{\mathrm{n}}_{3 \uparrow} \hat{\mathrm{n}}_{3 \downarrow}\right)-\mathrm{t} \hat{\mathrm{~T}}^{+} \tag{A3-1}\\
\hat{\mathrm{h}}_{\mathrm{T}}^{(0)}= & \hat{\mathrm{h}}_{\mathrm{H}}+\hat{\mathrm{h}}_{\mathrm{EMV}}^{(0)}+\hat{\mathrm{h}}_{\mathrm{EIP}}^{(0)}= \\
& {\left[\varepsilon+\sum_{\mathrm{i}} \frac{\mathrm{~g}_{\mathrm{iA}}}{\sqrt{2}}\left\langle\hat{\mathrm{R}}_{\mathrm{i}+}\right\rangle^{(0)}\right] \hat{\mathrm{N}}^{+}+\sum_{\mathrm{i}} \mathrm{~g}_{\mathrm{iD}}\left\langle\hat{\mathrm{Q}}_{i 2}\right\rangle^{(0)} \hat{\mathrm{n}}_{2}+\left[-\mathrm{t}-\frac{\mathrm{g}}{\sqrt{2}}\left\langle\hat{\mathrm{u}}_{+}\right\rangle^{(0)}\right] \hat{\mathrm{T}}^{+}+} \\
& \mathrm{U}_{\mathrm{d}} \hat{\mathrm{n}}_{2 \uparrow} \hat{\mathrm{n}}_{2 \downarrow}+\mathrm{U}_{\mathrm{a}}\left(\hat{\mathrm{n}}_{1 \uparrow} \hat{\mathrm{n}}_{1 \downarrow}+\hat{\mathrm{n}}_{3 \uparrow} \hat{\mathrm{n}}_{3 \downarrow}\right) \tag{A3-2}
\end{align*}
$$

It is now clear that $\hat{\mathrm{h}}_{\mathrm{T}}^{(0)}$ is different from $\hat{\mathrm{h}}_{\mathrm{H}}$ and then their eigenvectors are not the same. However, exploiting the relation $\hat{\mathrm{N}}^{+}+\hat{\mathrm{n}}_{2}=\hat{\mathrm{n}}_{1}+\hat{\mathrm{n}}_{2}+\hat{\mathrm{n}}_{3}=2$ the equation (A3-2) can be recast in the form

$$
\begin{equation*}
\hat{\mathrm{h}}_{\mathrm{T}}^{(0)}=\hat{\mathrm{h}}_{\mathrm{H}}+\hat{\mathrm{h}}_{\mathrm{EMV}}^{(0)}+\hat{\mathrm{h}}_{\mathrm{EPP}}^{(0)}=\varepsilon^{\prime} \hat{\mathrm{N}}^{+}-\mathrm{t}^{\prime} \hat{\mathrm{T}}^{+}+\mathrm{U}_{\mathrm{d}} \hat{\mathrm{n}}_{2 \uparrow} \hat{\mathrm{n}}_{2 \downarrow}+\mathrm{U}_{\mathrm{a}}\left(\hat{\mathrm{n}}_{1 \uparrow} \hat{\mathrm{n}}_{1 \downarrow}+\hat{\mathrm{n}}_{3 \uparrow} \hat{\mathrm{n}}_{3 \downarrow}\right) \tag{A3-3}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon^{\prime}=\varepsilon+\sum_{\mathrm{i}} \frac{4 \mathrm{~g}_{\mathrm{iD}}^{2}}{\hbar \omega_{\mathrm{iD}}}-\left(\frac{\mathrm{g}_{\mathrm{iA}}^{2}}{\hbar \omega_{\mathrm{iA}}}+\frac{2 \mathrm{~g}_{\mathrm{iD}}^{2}}{\hbar \omega_{\mathrm{iD}}}\right)\left\langle\hat{\mathrm{N}}^{+}\right\rangle \quad \mathrm{t}^{\prime}=\mathrm{t}+\frac{\mathrm{g}^{2}}{\hbar \omega_{+}}\left\langle\hat{\mathrm{T}}^{+}\right\rangle^{(0)} \tag{A3-4}
\end{equation*}
$$

Thus, the eigenvectors (and the eigenvalues) of $\hat{\mathrm{h}}_{\mathrm{T}}^{(0)}$ can be formally derived from that ones of $\hat{\mathrm{h}}_{\mathrm{H}}$ by swapping the parameters ε and t with ε^{\prime} and t^{\prime}.

APPENDIX 4

First of all, it is worth working out some relations in the time and frequency domain for a general function $z(t)$ which depends on the electrical field $\mathbf{E}(\mathrm{t})$. The power series expansion of $\mathrm{z}(\mathrm{t})$ results

$$
\begin{equation*}
z(t)=z^{(1)}(t)+z^{(2)}(t)+z^{(3)}(t) \ldots \tag{A4-1}
\end{equation*}
$$

where $\mathrm{z}^{(\mathrm{n})}(\mathrm{t})$ depends on $\mathbf{E}^{(\mathrm{n})}(\mathrm{t})$.
Choosing a monochromatic electrical field as

$$
\begin{equation*}
\mathbf{E}(\mathrm{t})=\frac{1}{2}\left[\mathbf{E}_{\omega_{1}} \mathrm{e}^{-\mathrm{i} \omega_{1} \mathrm{t}}+\mathbf{E}_{-\omega_{1}} \mathrm{e}^{\mathrm{i} \omega_{1} \mathrm{t}}\right] \tag{A4-2}
\end{equation*}
$$

where $\mathbf{E}_{\omega_{1}}=\mathbf{E}_{-\omega_{1}}^{*}=\mathbf{E}_{1}$, the following expressions are achieved at the first three orders

TIME DOMAIN

$$
\begin{gather*}
\mathrm{z}^{(1)}(\mathrm{t})=\frac{1}{\sqrt{2 \pi}}\left[\widetilde{\mathbf{z}}^{(1)}\left(-\omega_{1} ;+\omega_{1}\right) \mathrm{e}^{-\mathrm{i} \omega_{1} \mathrm{t}}+\widetilde{\mathbf{z}}^{(1)}\left(\omega_{1} ;-\omega_{1}\right) \mathrm{e}^{\mathrm{i} \omega_{1} \mathrm{t}}\right] \tag{A4-3}\\
\mathrm{z}^{(2)}(\mathrm{t})=\frac{1}{\sqrt{2 \pi}}\left[\widetilde{\mathrm{z}}^{(2)}\left(-2 \omega_{1} ; \omega_{1}, \omega_{1}\right) \mathrm{e}^{-\mathrm{i} 2 \omega_{1} \mathrm{t}}+\widetilde{\mathbf{z}}^{(2)}\left(0 ; \omega_{1},-\omega_{1}\right)+\widetilde{\mathbf{z}}^{(2)}\left(+2 \omega_{1} ;-\omega_{1},-\omega_{1}\right) \mathrm{e}^{\mathrm{i} 2 \omega_{1} \mathrm{t}}\right] \tag{A4-4}\\
\mathrm{z}^{(3)}(\mathrm{t})=\frac{1}{\sqrt{2 \pi}}\left[\widetilde{\mathbf{z}}^{(3)}\left(-3 \omega_{1} ; \omega_{1}, \omega_{1}, \omega_{1}\right) \mathrm{e}^{-3 \omega_{1} \mathrm{t}}+\widetilde{\mathbf{z}}^{(3)}\left(-\omega_{1} ; \omega_{1}, \omega_{1},-\omega_{1}\right) \mathrm{e}^{-\mathrm{i} \omega_{1} \mathrm{t}}+\right. \tag{A4-5}\\
\left.+\widetilde{\mathbf{z}}^{(3)}\left(\omega_{1} ;-\omega_{1},-\omega_{1}, \omega_{1}\right) \mathrm{e}^{\mathrm{i} \omega_{1} \mathrm{t}}+\widetilde{\mathbf{z}}^{(3)}\left(+3 \omega_{1} ;-\omega_{1},-\omega_{1},-\omega_{1}\right) \mathrm{e}^{3 \omega_{1} \mathrm{t} \mathrm{t}}\right]
\end{gather*}
$$

FREQUENCY DOMAIN

$$
\begin{align*}
& \mathbf{z}^{(1)}(\omega)= \tilde{\mathbf{z}}^{(1)}\left(-\omega_{1} ; \omega_{1}\right) \delta\left(\omega-\omega_{1}\right)+\widetilde{\mathbf{z}}^{(1)}\left(\omega_{1} ;-\omega_{1}\right) \delta\left(\omega+\omega_{1}\right) \tag{A4-6}\\
& \mathbf{z}^{(2)}(\omega)= \tilde{\mathbf{z}}^{(2)}\left(-2 \omega_{1} ; \omega_{1}, \omega_{1}\right) \delta\left(\omega-2 \omega_{1}\right)+\tilde{\mathbf{z}}^{(2)}\left(0 ; \omega_{1},-\omega_{1}\right) \delta(\omega) \\
&+\widetilde{\mathbf{z}}^{(2)}\left(+2 \omega_{1} ;-\omega_{1},-\omega_{1}\right) \delta\left(\omega+2 \omega_{1}\right) \tag{A4-7}\\
& \mathbf{z}^{(3)}(\omega)= \widetilde{\mathbf{z}}^{(3)}\left(-3 \omega_{1} ; \omega_{1}, \omega_{1}, \omega_{1}\right) \delta\left(\omega-3 \omega_{1}\right)+\widetilde{\mathbf{z}}^{(3)}\left(-\omega_{1} ; \omega_{1}, \omega_{1},-\omega_{1}\right) \delta\left(\omega-\omega_{1}\right) \\
&+\widetilde{\mathbf{z}}^{(3)}\left(\omega_{1} ;-\omega_{1},-\omega_{1}, \omega_{1}\right) \delta\left(\omega+\omega_{1}\right)+\widetilde{\mathbf{z}}^{(3)}\left(+3 \omega_{1} ;-\omega_{1},-\omega_{1},-\omega_{1}\right) \delta\left(\omega+3 \omega_{1}\right) \tag{A4-8}
\end{align*}
$$

The Fourier transform and its inverse have been defined in Eq. (A2-14).

The solution of the equation of motion for the density operator, Eq. (19)

Let's first recast $\hat{\mathrm{h}}_{\mathrm{T}}(\mathrm{t})$ in Eq. 19 as the sum of two components:

$$
\begin{equation*}
\hat{\mathrm{h}}_{\mathrm{T}}(\mathrm{t})=\hat{\mathrm{h}}(\mathrm{t})+\hat{\mathrm{f}}(\mathrm{t}) \tag{A4-9}
\end{equation*}
$$

where $\hat{\mathrm{h}}(\mathrm{t})$ collects all the terms that do not show any explicit dependence on the electrical field and $\hat{f}(\mathrm{t})$ collects the others.

Eq. (19) is solved in a perturbative way by expanding the density matrix in a power series of \mathbf{E} :

$$
\begin{equation*}
\hat{\rho}(\mathrm{t})=\hat{\rho}^{(0)}+\hat{\rho}^{(1)}(\mathrm{t})+\hat{\rho}^{(2)}(\mathrm{t})+\ldots \tag{A4-10}
\end{equation*}
$$

The Hamiltonian $\hat{\mathrm{h}}_{\mathrm{T}}(\mathrm{t})$ contains $\hat{\rho}(\mathrm{t})$ in the expectation values of the vibrational operators which are consequently expanded in power series:

$$
\begin{equation*}
\langle\hat{\mathrm{O}}\rangle=\langle\hat{\mathrm{O}}\rangle^{(0)}+\langle\hat{\mathrm{O}}\rangle^{(1)}+\langle\hat{\mathrm{O}}\rangle^{(2)}+\ldots \tag{A4-11}
\end{equation*}
$$

where $\langle\hat{O}\rangle^{(n)}=\operatorname{Tr}\left[\hat{O} \hat{\rho}^{(n)}\right]$ and \hat{O} is any of the vibrational operators.
Working in the Liouville space instead of the Hilbert one, and substituting the expansions in the electrical field of Eq. (A4-9) into the equation of motion, Eq. (19), the following expressions for the first three orders are obtained:

$$
\begin{gather*}
\mathrm{i} \hbar \hat{\dot{\rho}}^{(1)}(\mathrm{t})=\mathrm{L} \hat{\rho}^{(1)}(\mathrm{t})+\left[\hat{\mathrm{f}}^{(1)}(\mathrm{t}), \hat{\rho}^{(0)}\right] \tag{A4-12}\\
\mathrm{i} \hbar \hat{\dot{\rho}}^{(2)}(\mathrm{t})=\mathrm{L} \hat{\rho}^{(2)}(\mathrm{t})+\left[\hat{\mathrm{h}}^{(1)}(\mathrm{t})+\hat{\mathrm{f}}^{(1)}(\mathrm{t}), \hat{\rho}^{(1)}(\mathrm{t})\right]+\left[\hat{\mathrm{f}}^{(2)}(\mathrm{t}), \hat{\rho}^{(0)}\right] \tag{A4-13}\\
\mathrm{i} \hbar \hat{\dot{\rho}}^{(3)}(\mathrm{t})=\mathrm{L} \hat{\rho}^{(3)}(\mathrm{t})+\left[\hat{\mathrm{h}}^{(1)}(\mathrm{t})+\hat{\mathrm{f}}^{(1)}(\mathrm{t}), \hat{\rho}^{(2)}\right] \\
+\left[\hat{\mathrm{h}}^{(2)}(\mathrm{t})+\hat{\mathrm{f}}^{(2)}(\mathrm{t}), \hat{\rho}^{(1)}\right]+[\hat{\mathrm{f}} \tag{A4-14}\\
\left.(3)(\mathrm{t}), \hat{\rho}^{(0)}\right]
\end{gather*}
$$

Solution of Eq. (A4-12) provides $\hat{\rho}^{(1)}$ and consequently any first order term: inserting it into Eq. (A4-13), second order quantities can be worked out and so on Further detail is given in Ref. 32: here we just remind that to solve previous Equations we need to perform a Fourier transform and therefore we get as a solution the density operator in the frequency domain. ${ }^{32} \mathrm{We}$ remind that the superscript in round brackets at the top of operators and expectation values correspond to the order in electrical field.

L is the Liouville operator and it is defined, in the frequency domain, as

$$
\begin{equation*}
\left.\left.\left.\sum_{\mathrm{nm}} \mathrm{~L}_{\mathrm{i}, \mathrm{~nm}}(\omega) \rho_{\mathrm{nm}}^{(\mathrm{n})}(\omega)=\mid \hat{\mathrm{h}}^{(\mathrm{n}}\right)(\omega), \hat{\rho}^{(0)}\right]_{\mathrm{j}}+\hat{\mathrm{h}}^{(0)}, \hat{\rho}^{(\mathrm{n})}(\omega)\right]_{\mathrm{j}} \tag{A4-15}
\end{equation*}
$$

The expression of h_{T} at the first three orders.

Here we show the Fourier components for $\hat{\mathrm{h}}(\mathrm{t})$ and $\hat{\mathrm{f}}(\mathrm{t})$ up to the third order. The ones belonging to $\hat{\mathrm{h}}_{\mathrm{T}}(\mathrm{t})$ can be calculated from Eq. (A4-9). $\hat{\mathrm{h}}_{\mathrm{T}}$ in the frequency and time domain can be reconstructed from Eq. (A4-3)-(A4-5) and Eq. (A4-6)-(A4-8) respectively.

$$
\hat{\tilde{\mathrm{h}}}^{(3)}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)=\mathrm{D}_{\mathrm{A}}\left(\mp 3 \omega_{1}\right)\left\langle\hat{\mathrm{N}}^{-}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)} \hat{\mathrm{N}}^{-}
$$

$$
-\frac{\mathrm{gR}_{\mathrm{m}}}{\sqrt{2}} \mathrm{~F}_{-}\left(\mp 3 \omega_{1}\right) /\left\langle\hat{\mathrm{T}}^{-}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)} \hat{\mathrm{T}}^{-}
$$

(A4-19)

$$
\begin{aligned}
& \hat{\tilde{h}}^{(3)}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)=\mathrm{D}_{\mathrm{A}}\left(\mp \omega_{1}\right)\left\langle\hat{\mathrm{N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(3)} \hat{\mathrm{N}}^{-} \\
& \quad-\frac{\mathrm{gR}_{\mathrm{m}}}{\sqrt{2}} \mathrm{~F}_{-}\left(\mp \omega_{1}\right)\left\langle\hat{\mathrm{T}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(3)} \hat{\mathrm{T}}^{-}
\end{aligned}
$$

$$
\begin{align*}
& \hat{\tilde{h}}^{(1)}\left(\pm \omega_{1} ; \mp \omega_{1}\right)=\mathrm{D}_{\mathrm{A}}\left(\mp \omega_{1}\right)\left\langle\hat{\mathrm{N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \hat{\mathrm{N}}^{-}-\frac{\mathrm{gR}}{\sqrt{2}} \mathrm{~F}_{-}\left(\mp \omega_{1}\right)\left\langle\hat{\mathrm{T}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \hat{\mathrm{T}}^{-} \tag{A4-16}\\
& \hat{\widetilde{h}}^{(2)}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)=\mathrm{D}_{\mathrm{A}}\left(\mp 2 \omega_{1}\right)\left\langle\hat{\mathrm{N}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \hat{\mathrm{N}}^{+} \\
& +\mathrm{D}_{\mathrm{D}}\left(\mp 2 \omega_{1}\right)\left\langle\hat{\mathrm{n}}_{2}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \hat{\mathrm{n}}_{2} \\
& -\frac{\mathrm{g}}{\sqrt{2}} \mathrm{~F}_{+}\left(\mp 2 \omega_{1}\right)\left\langle\hat{\mathrm{T}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \hat{\mathrm{T}}^{+} \tag{A4-17}\\
& \hat{\widetilde{h}}^{(2)}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)=\mathrm{D}_{\mathrm{A}}(0)\left\langle\hat{\mathbf{N}}^{+}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(2)} \hat{\mathrm{N}}^{+}+\mathrm{D}_{\mathrm{D}}(0)\left\langle\hat{\mathrm{n}}_{2}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(2)} \hat{\mathbf{n}}_{2} \\
& -\frac{\mathrm{g}}{\sqrt{2}} \mathrm{~F}_{+}(0)\left\langle\hat{\mathrm{T}}^{+}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(2)} \hat{\mathrm{T}}^{+} \tag{A4-18}
\end{align*}
$$

$$
\begin{align*}
& \hat{\tilde{f}}^{(1)}\left(\pm \omega_{1} ; \mp \omega_{1}\right)=-\frac{\sqrt{\pi} \mathrm{gR}}{2} \mathrm{G}_{-}\left(\mp \omega_{1}\right)\left\langle\hat{\mathrm{N}}^{+}\right\rangle^{(0)} \mathrm{E}_{\mp \omega_{1}} \hat{\mathrm{~T}}^{-} \\
& -\mathrm{e} \sqrt{\frac{\pi}{2}}\left[\frac{\mathrm{~d}_{0}}{2}+\frac{\mathrm{h}_{\mathrm{z}}}{2} \mathrm{~F}_{+}(0)\left\langle\hat{\mathrm{T}}^{+}\right\rangle^{(0)}\right] \mathrm{E}_{\mp \omega_{1}} \hat{\mathrm{~N}}^{-} \tag{A4-21}\\
& \hat{\tilde{f}}^{(2)}\left(\pm 2 \omega_{1} ; \pm \omega_{1}, \pm \omega_{1}\right)=-\frac{\mathrm{g}}{2 \sqrt{2}} \mathrm{G}_{+}\left(\mp 2 \omega_{1}\right) \mathrm{E}_{\mp \omega_{1}}\left\langle\hat{\mathrm{~N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \hat{\mathrm{T}}^{+} \\
& +\frac{\mathrm{e} \mathrm{~h}_{\mathrm{z}} \mathrm{R}_{\mathrm{m}}}{2 \sqrt{2}} \mathrm{E}_{\mp \omega_{1}}\left\langle\hat{\mathrm{u}}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \hat{\mathrm{N}}^{+} \tag{A4-22}\\
& \hat{\tilde{f}}{ }^{(2)}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)=-\frac{\mathrm{g}}{2 \sqrt{2}} \mathrm{G}_{+}(0) \mathrm{E}_{\mp \omega_{1}}\left[\mathrm{E}_{\mp \omega_{1}}\left\langle\hat{\mathrm{~N}}^{-}\left(\mp \omega_{1} ; \pm \omega_{1}\right)\right\rangle^{(1)}+\mathrm{E}_{ \pm \omega_{1}}\left\langle\hat{\mathrm{~N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}\right] \hat{\mathrm{T}}^{+} \\
& +\frac{\mathrm{e} \mathrm{~h}_{\mathrm{z}} \mathrm{R}_{\mathrm{m}}}{2 \sqrt{2}}\left[\mathrm{E}_{\mp \omega_{1}}\left\langle\hat{\mathrm{u}}_{-}\left(\mp \omega_{1} ; \pm \omega_{1}\right)\right\rangle^{(1)}+\mathrm{E}_{ \pm \omega_{1}}\left\langle\hat{\mathrm{u}}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}\right] \hat{\mathrm{N}}^{+} \tag{A4-23}\\
& \hat{\tilde{f}}^{(3)}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)=-\frac{\mathrm{gR}_{\mathrm{m}}}{2 \sqrt{2}} \mathrm{G}_{-}\left(\mp 3 \omega_{1}\right)\left[\left\langle\hat{\mathrm{N}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right)^{(2)} \mathrm{E}_{\mp \omega_{1}}\right] \hat{\mathrm{T}}^{-} \\
& -\frac{\mathrm{eh}}{2 \sqrt{2}}\left[\left\langle\hat{\mathrm{u}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \mathrm{E}_{\mp \omega_{1}}\right] \hat{\mathrm{N}}^{-} \tag{A4-24}\\
& \hat{\tilde{f}}^{(3)}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)= \\
& -\frac{\mathrm{gR}}{2 \sqrt{2}} \mathrm{G}_{-}\left(\mp \omega_{1}\right)\left[\left\langle\hat{\mathrm{N}}^{+}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(2)} \mathrm{E}_{\mp \omega_{1}}+\left\langle\hat{\mathrm{N}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \mathrm{E}_{ \pm \omega_{1}}\right] \hat{\mathrm{T}}^{-} \\
& -\frac{\mathrm{eh}}{2 \sqrt{2}}\left[\left\langle\hat{u}_{+}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(2)} \mathrm{E}_{\mp \omega_{1}}+\left\langle\hat{\mathbf{u}}_{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \mathrm{E}_{ \pm \omega_{1}}\right] \hat{\mathrm{N}}^{-}
\end{align*}
$$

(A4-25)

In the following, the expectation values for the BOV vibrational operators in the frequency domain are shown, in explicit form, from the first to the third order in the electrical field:

$$
\begin{equation*}
\left\langle\hat{\mathbf{u}}_{-}(\omega)\right\rangle^{(0)}=0 \quad\left\langle\hat{\mathbf{u}}_{+}(\omega)\right\rangle^{(0)}=\mathrm{F}_{+}(0)\left\langle\hat{\mathrm{T}}^{+}\right\rangle^{(0)} \tag{A4-26}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\hat{\mathrm{u}}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}=\mathrm{F}_{-}\left(\mp \omega_{1}\right)\left\langle\hat{\mathrm{T}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}+\sqrt{\frac{\pi}{2}} \mathrm{G}_{-}\left(\mp \omega_{1}\right) \mathrm{E}_{\mp \omega_{1}}\left\langle\hat{\mathrm{~N}}^{+}\right\rangle^{(0)} \tag{A4-27}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\hat{\mathbf{u}}_{+}(\omega)\right\rangle^{(1)}=0 \tag{A4-28}
\end{equation*}
$$

$$
\begin{gather*}
\left\langle\hat{\mathbf{u}}_{-}(\omega)\right\rangle^{(2)}=0 \tag{A4-29}\\
\left\langle\hat{\mathbf{u}}_{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)}=\mathrm{F}_{+}\left(\mp 2 \omega_{1}\right)\left\langle\hat{\mathrm{T}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \\
+\frac{1}{2} \mathrm{G}_{+}\left(\mp 2 \omega_{1}\right)\left\langle\hat{\mathrm{N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \mathrm{E}_{\mp \omega_{1}} \tag{A4-30}
\end{gather*}
$$

$$
\begin{aligned}
\left\langle\hat{\mathrm{u}}_{-}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)}= & \mathrm{F}_{-}\left(\mp 3 \omega_{1}\right)\left\langle\hat{\mathrm{T}}^{+}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)} \\
& +\frac{1}{2} \mathrm{G}_{-}\left(\mp 3 \omega_{1}\right)\left\langle\hat{\mathrm{N}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)} \mathrm{E}_{\mp \omega_{1}}
\end{aligned}
$$

$$
\begin{equation*}
\left\langle\hat{\mathbf{u}}_{+}(\omega)\right\rangle^{(3)}=0 \tag{A4-33}
\end{equation*}
$$

$$
\begin{align*}
&\left\langle\hat{u}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle \\
&+\frac{1}{2} G_{-}\left(\mp \mathrm{F}_{-}\left(\mp \omega_{1}\right)\right)\left\langle\left\langle\hat{\mathrm{T}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(3)}\right. \tag{A4-34}\\
&\left.\left.\left.\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle\right\rangle^{(2)} \mathrm{E}_{ \pm \omega_{1}}+\left\langle\hat{\mathrm{N}}^{+}\left(0_{1} ; \omega_{1},-\omega_{1}\right)\right\rangle^{(2)} \mathrm{E}_{\mp \omega_{1}}\right]
\end{align*}
$$

APPENDIX 5

Making use of the response theory, the following expressions are achieved for the polarizabilities and hyperpolarizabilities ${ }^{32}$:

$$
\begin{align*}
& \alpha\left(\pm \omega_{1} ; \mp \omega_{1}\right)=\frac{2}{\varepsilon_{0} \sqrt{2 \pi} \mathrm{E}_{1}}\left\langle\hat{\mathrm{R}}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \tag{A5-1}\\
& \gamma\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)=\frac{8}{\varepsilon_{0} \sqrt{2 \pi} \mathrm{E}_{1}^{3}}\left\langle\hat{\mathrm{R}}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)} \tag{A5-2}\\
& \gamma\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)=\frac{8}{3 \varepsilon_{0} \sqrt{2 \pi} \mathrm{E}_{1}^{3}}\left\langle\hat{\mathrm{R}}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(3)} \tag{A5-3}
\end{align*}
$$

To write the expressions for the polarizabilities more than one convention is found in the literature. We followed the same convention as in the textbook by Butcher and Cotter. ${ }^{35}$ The electrical field is defined in Eq. (A4-2).

The Fourier components of $\hat{R}(t)$ at the first and third order are:

$$
\left\langle\hat{\mathbf{R}}^{(1)}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle=\mathrm{e}\left[\frac{\mathrm{~d}_{0}}{2}+\frac{\mathrm{h}_{\mathrm{z}}}{\sqrt{2}}\left\langle\mathrm{u}_{+}\right\rangle^{(0)}\right]\left\langle\hat{\mathrm{N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}-\frac{\mathrm{eh}_{\mathrm{z}} \mathrm{R}_{\mathrm{m}}}{\sqrt{2}}\left\langle\hat{\mathrm{u}}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}\left\langle\hat{\mathrm{N}}^{+}\right\rangle^{(0)}
$$

$$
\begin{align*}
& \left\langle\hat{\mathrm{R}}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)}=\mathrm{e}\left[\frac{\mathrm{~d}_{0}}{2}+\frac{\mathrm{h}_{\mathrm{z}}}{\sqrt{2}}\left\langle\hat{\mathrm{u}}_{+}\right\rangle^{(0)}\right]\left\langle\hat{\mathrm{N}}^{-}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)} \\
& -\mathrm{e} \frac{\mathrm{~h}_{\mathrm{z}} \mathrm{R}_{\mathrm{m}}}{\sqrt{2}}\left\langle\hat{\mathrm{~N}}^{+}\right\rangle^{(0)}\left\langle\hat{\mathrm{u}}_{-}\left(\pm 3 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(3)} \\
& +\mathrm{e} \frac{\mathrm{~h}_{\mathrm{z}}}{\sqrt{2}}\left\langle\hat{\mathrm{u}}_{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)}\left\langle\hat{\mathrm{N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \\
& -\mathrm{e} \frac{\mathrm{~h}_{\mathrm{z}} \mathrm{R}_{\mathrm{m}}}{\sqrt{2}}\left\langle\hat{\mathrm{~N}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)}\left\langle\hat{\mathrm{u}}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)} \tag{A5-5}
\end{align*}
$$

$$
\begin{aligned}
& \left\langle\hat{\mathrm{R}}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(3)}=\mathrm{e}\left[\frac{\mathrm{~d}_{0}}{2}+\frac{\mathrm{h}_{\mathrm{z}}}{\sqrt{2}}\left\langle\hat{\mathrm{u}}_{+}\right\rangle^{(0)}\right]\left\langle\hat{\mathrm{N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(3)} \\
& -\mathrm{e} \frac{\mathrm{~h}_{\mathrm{z}} \mathrm{R}_{\mathrm{m}}}{\sqrt{2}}\left\langle\hat{\mathrm{~N}}^{+}\right\rangle^{(0)}\left\langle\hat{\mathrm{u}}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(3)} \\
& +\mathrm{e} \frac{\mathrm{~h}_{\mathrm{z}}}{\sqrt{2}}\left[\left\langle\hat{\mathrm{u}}_{+}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(2)}\left\langle\hat{\mathrm{N}}^{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}+\left\langle\hat{\mathrm{u}}_{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(0)}\left\langle\hat{\mathrm{N}}^{-}\left(\mp \omega_{1} ; \pm \omega_{1}\right)\right\rangle^{(1)}\right] \\
& -\mathrm{e} \frac{\mathrm{~h}_{\mathrm{z}} \mathrm{R}_{\mathrm{m}}}{\sqrt{2}}\left[\left\langle\hat{\mathrm{~N}}^{+}\left(0 ; \mp \omega_{1}, \pm \omega_{1}\right)\right\rangle^{(2)}\left\langle\hat{\mathrm{u}}_{-}\left(\pm \omega_{1} ; \mp \omega_{1}\right)\right\rangle^{(1)}\left\langle\hat{\mathrm{N}}^{+}\left(\pm 2 \omega_{1} ; \mp \omega_{1}, \mp \omega_{1}\right)\right\rangle^{(2)}\left\langle\hat{\mathrm{u}}_{-}\left(\mp \omega_{1} ; \pm \omega_{1}\right)\right\rangle^{(1)}\right]
\end{aligned}
$$

(A5-6)

APPENDIX 6

TPA is often expressed in terms of absorption cross section, σ_{2} :

$$
\begin{equation*}
\sigma_{2}=\frac{\hbar \omega_{1}}{\mathrm{~N}} \mathrm{a}_{2} \tag{A6-1}
\end{equation*}
$$

where N is the number of molecules per unit volume and

$$
\begin{align*}
& \mathrm{a}_{2}=\frac{3 \omega_{1} \operatorname{Im} \chi^{(3)}\left(-\omega_{1} ; \omega_{1}, \omega_{1},-\omega_{1}\right)}{2 \varepsilon_{0} \mathrm{c}^{2} \eta_{0}^{2}} \tag{A6-2}\\
& \mathrm{a}_{2}=\frac{24 \pi^{2} \omega_{1} \operatorname{Im} \chi^{(3)}\left(-\omega_{1} ; \omega_{1}, \omega_{1},-\omega_{1}\right)}{\mathrm{c}^{2} \eta_{0}^{2}} \tag{A6-3}
\end{align*}
$$

η_{0} is the linear refractive index and c the speed of light.

