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TABLES

Table S-1. Expressions and energies of the complete (6 state) basis set.
Symmetry of the eigenstates: ’g’’ stands for gerade and “’u’’ stands for
ungerade.
Basis State Energy Eigenstate ~ Symmetry
[S1)=25:4;,[0) U, 1) g

[Afﬁéi +é§¢éf¢]o> € 12) u

1 A+ A+ A+ A+

S3> :E[asTazi +a2Ta3¢]O> & | 3> 9

[A+¢é§¢ +é§Tél+¢]0> 28 |4) 9
[Ss)=8:,85.[0) 26+U,  [5) u
|Ss)=4,5a,,[0) 2e+U, 16) g

Table S-2. Exact eigenvalues and eigenvectors of the reduced Hamiltonian Eq. (5).

Eigenvector® Eigenvalue® Transition Energy®
B (U, +e)-A” +16t° _A+A +16t7
|1>_Zai|si> E, = 2 E,= 2
—A+A® +16t°
:Zbi|si> E:=e Es, = * 2 !

2

2 2
3)=Scls,) E3:(Ud +e)+ VA" 416t E,, =A? +16t2

®Eigenvectors coefficients:

a ~ _fu b,=0 C "By
1 1 1
JE5, +4t? JES, +4t?
2t 2
aZZaBZL b2:_b3:i CZ_CSZL
JEZ, +4t° V2 JEZ, +4t?
bAZS-Ud
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Table S-3. Analytical expression of a(-w,;+o,)for the dimer and the trimer

without electron-phonon coupling. Data concerning the dimer are from Ref. 32.

DIMER TRIMER

Level Diagram

[3)
2)

[2)

Expression for o

ooy 0,)= =2 R1; E
PV ey (ho, +iT)? —E2

Transition Dipoles
sz = (edcl)2 R122 = (edazbz )2
Transition energies

_U+4U? +16t° A +A? +16t7

E21 2 EZl 2
—~U++/U? +16t? —A+~A +16t?
Es = Es =
2 2
Coefficient Expressions
E
C, = = a,b, = t

JEZ, +4t?
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Fig. S-1. Enlargment of Im[y(-3w,;®,,®,,®, )] in the vibrational region,
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APPENDIXES

APPENDIX 1
Definition of the BOV modes
We recognise four BOV modes in the system under investigation (3N-5, N=3), but we are only
interested in the symmetric and antisymmetric stretching modes which modulate the distance

between A and D. The modes are respectively written as follows:
1
Bov - E(qs -q,) BV = (\/ M1Gs —24/m,0, +m, ;) (AL-1)

where m; is the mass of the i-site, m=2m, + m, and q; are the spectroscopic mass-weighted
coordinates. The subscripts “S” and “AS” to Q° specify if the coordinate is symmetric or
antisymetric with respect to the exchange of the sites 1 and 3. The BOV modes can also be treated

as in-phase and out-of-phase combinations of a “left” and a “right” coordinate:

BOV __ 1 BOV BOV BOV __ BOV BOV
= + Qg \ / (A1-2)
* 2 7 ) " f
BOV m2 BOV m2 . H
where Q/ /m—q ,—0, and Qg /m—qz. the former affects only the distance between
1 1

the sites 1 and 2 and the latter between the sites 2 and 3. In terms of dimensionless modes we finally

have
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Derivation of the vibronic coupling Hamiltonian Hgpmy
The vibronic coupling Hamiltonian can be derived by considering the site-energies as linearly
dependent on the SEV modes: to perform this expansion, Eq. (5) needs recasting in a more useful

way, so that all site-energies are shown explicitly:

"1 _ . Acceptorla Acceptor 3 & Donor A
Hy=¢lumo Nit+€mo N3+ EromoN:
+Udn2Tn2¢+Ua(nnnl¢+n3Tn3¢) (A1-5)

_tADTAD - tDATDA
The first row is equivalent to the term (A, + A, ) since /Tt = gAblors ang gPor can be set to

zero (as considered in the main text) without loss of generality. All site-energies are therefore

developed in power series as a function of the corresponding SEV modes up to the first order:

68Acceptor1
Acceptorl __ [ Acceptorl 0 LUMO _
€ umo _(SLUMO ) +Z P Qi (A1-6)
i Qil 0
88Acceptor3
Acceptor3 __ AcceptorB)O z LUMO _
€umo T (SLUMO + 0. Qis (A1-7)
i Qi3

0

oe
eponio = (evenis ) +z[ o }z (A1-8)
1 i2

Considering only the first row in (A1-5) and inserting the previous expressions, the following

equation is obtained:

Acceptor1a Acceptor 3 & Donor & __
€umo Nit€umo N3t EhomoN, =

Acceptor1 Acceptor 3
Acceptor1 \° 68|_U|v|o ~ Acceptor 3 \° 68LUMo A Donor |0
(SLUMO ) "’Z P Qu [N+ (SLUMO ) "‘Z P Qi [N+ (SHOMO) +Z
i Qil 0 i Qi3 0 i

(A1-9)
H H Donor 0 H Acceptorl 0 Donor 0
On the right hand side we then set (sHOMO) =0 and define (SLUMpO ) —(eHOMO) =g, so that we
obtain:

Acceptor 1 & Acceptor 3 A Donor &
oMo MiFT&wmo N3 +€pomoN, =

agAcceptor 1 agAcceptor 3 B Donor (Al_lO)
A, +0,)+A, S| M0 1 +a, Y[ Q4 [Hom]Q
' ’ 12[ aQil 0 ' 3Z aQi3 0 ? 2iz QiD 2

Making use of the definitions in Eg. (10) and (13), the following equation can be written down:

Acceptor1a Acceptor 3 A Donor A _ (A A giA |+ - A
€umo Nit&€ Mo N3t EpomoN: —8(n1 + n3)+Z{\/§ [Ri+N +R;_N ]+giDQi2n2} (Al1-11)

68D
QiD

Fiz n2
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where Z{QT; R.K*+R, K]+ giDQizﬁz}is the definition of 1., in Eq. (6).

Derivation of the vibrational coupling Hamiltonian Hgp

In this case we develop the charge transfer integrals (in the last two terms in Eq. (5) or in the last

row in Eqg. (A1-5)) in power series as a function of the BOV modes:

t:AD =tAD + atAD UL and t:DA =tDA + atDA UR (Al'lZ)
ou ), g J,

L R

Notice that in the electronic Hamiltonian I3IH the charge transfer integrals indicated with t are

considered to be “unperturbed”: once the vibronic coupling is introduced, the unperturbed ones are

still named t and the coupled ones are named t’.
The term t,, T, +tpaToa iN EQ. (5) can be rewritten including the expansion (A1-12) and making

use of the definitions (A1-3), (11) and (13):

Bao Tao + toaToa =tan Tan + tDA-T-DA - % [u+-i-+ +R mu:i_i] (A1-13)

where %[uj’* + Rmuji"] is the definition of A, in Eq. (7).

\/— EIP

Derivation of the vibronic Hamiltonian Hy

Starting from the vibrational Hamiltonian:

o e ARG I

h‘j [Pz +Q2 ]} (A1-14)

It can be easily rewritten in the form of Eq. (8), by using the Eq. (10)-(12).
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APPENDIX 2

The expressions for the vibrational operators can be worked out by solving the Heisenberg equation

of the motion:

in — (AR @), AR )] (A2-1)

The superscript H specifies that the operator is in the Heisenberg picture; A”(t) represents any of
the vibrational operators or the corresponding momenta. I3|“(t) is the Heisenberg representation of
the total Hamiltonian defined in Eq. (1). As an example, the equation of motion for R (t) is
worked out in the following: Eq. (A2-1) is solved for A" (t)=S" (t)providing:

dSH

SO )=k s 0l Bro 0] @

By substituting the expressions for AL, (t) and H!!(t) we have:

H
ISEO) __ 3, [0 (O] ronRE (1) (A2-3)
The relation [(IQH()) S“()}=4if{{1(t) has been used. Finally, considering the expression

i_dR”( ) =R (t), we achieve in the time domain:
o, dt

Ri (O +0lRi (1) =

1+

5 - _ - \/E%iAmiA K+ (t) (A2-4)

In the frequency domain (i.e. performing a Fourier transform on the previous equation) we have:

R (0)= D} (@)N" (o) (A2-5)

I+

\/_g|A03|A .
hl(o,A co+|yA) J

The calculation outlined above, can be repeated for all vibrational operators: in the following the

Where D, (0)=

expressions for all of them are summarized:
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Ri () =D (0N (o)

where

_ — 20,5 0;p _
h[mizD —(0)+ iVD)ZJ

D} (o)

_ Rm\/zgw_

Flo)= hlof —(0+iy)? J

_ —_e\/zhz o R,
hlcof —(o+ iy)ZJ

Gf(co)

DD((’O):iZgiDD:D((’O)

_ _\EgiAC‘)iA ,
ok —(0+iv, )’

D\ ()

_ Jge,
hlcof —(o0+ iy)ZJ

F. (o)

_ ev2h, o, _
hlmi —(0+ iy)ZJ

G. (o)

NOERLAD

(A2-6)

(A2-7)

(A2-8)

(A2-9)

(A2-10)

(A2-11)

(A2-12)

(A2-13)

S{f (t)}is the Fourier transform of f(t); y are the damping parameters for the vibrational transitions.

The Fourier transform and its inverse have been respectively performed with the relations

and

z(w):S{z(t)}:iTz(t)ei“"dt

(A2-143)
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z(t)=s—l{z(@)}=%fz(@)e—wdw (A2-14D)

The quantities F(®), G(o) and D(w) are usually called propagators: the first and the second are
respectively originated by the dependence of t and d on the BOV coordinates, whereas D(w) derives
from the dependence of the site energies on the SEV modes. The subscripts of D(w), A and D,
specify if it has been expanded the Donor or the Acceptor site energy; the subscripts of F(®) and

G(w), + and —, indicate that we are dealing with the coupling with u. and u..

Random phase approximation

The RPA requires that vibrational operators are replaced by their expectation values. The
expression for the expectation values in the time and in the frequency domain are:

(Q12(0)) = D (@), (o) (A2-15)

(R, (0)) = DY@ () (R, () =Dy} (o) (A2-16)

(0. ()) = F ()T (0) + 6_(o)3E®)N- (1) (A2-17)

(0.(0) = F. ()T (o) + 6. () EQR (1)) (A2-18)

(Qut) = 5 Pb (), (o) (A2-19)
(R.()-5PLefN )] (RM)-5PLefN @)  @e20)
(0.0) =5 F T @)+ 36 @SEOR©)f  »e2)
(0.0) =5 F. )T @)+ 3. @SEON 1)) »ke-22)

10
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APPENDIX 3

We are interested in comparing ﬁ@ and HH; considering the six level system the expressions are

the following

J+U A A +U, (LA, +A A, )—t T (A3-1)

2t 2

0>

I
I

m
—

>
fily

+

>

(A3-2)

It is now clear that h'” is different from h, and then their eigenvectors are not the same. However,

exploiting the relation N* +f, =f, +fA, + A, =2 the equation (A3-2) can be recast in the form

where

8’:8+Z4gi2D —( 9in + 295 J<N+> t'=t+ 9" <'i'+>(0) (A3-4)

o, (ho, "o, ho,
Thus, the eigenvectors (and the eigenvalues) of h'® can be formally derived from that ones of h,,

by swapping the parameters ¢ and t with ¢" and t’.

11
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APPENDIX 4

First of all, it is worth working out some relations in the time and frequency domain for a general

function z(t) which depends on the electrical field E(t). The power series expansion of z(t) results
2(t)=2z"(t)+ 2@ (t)+ z2°(t).... (A4-1)

where z"(t) depends on E™(t).

Choosing a monochromatic electrical field as

E(t)= % E.e™ +E "] (A4-2)

where E, =E’, =E,, the following expressions are achieved at the first three orders

TIME DOMAIN
20 (t)= % Z0(- oo, e + 20 (0,0, ] (A4-3)
T
2(2)(t)= % [2(2)(— 20, 0,0, ) 2 +79(0;0,,—0, )+ Z?@(+ 2031;—0)1,—w1)ei2°’1t] (A4-4)
T
1

—iot

N
—
w
-
—~
—t
N—"
I
—

7@ (—3m,;0,,0,, 0, )" + 7®) (— o 0,0,-0, )™ +

J2n (A4-5)

+79 (0,0, ,—0,, 0, " + 7% (+30,;-0, ,~0, o, ¥ ]

FREQUENCY DOMAIN

Al ((D) =z" (_ Wy, 0, )6(“) — ) +Z% ((‘01 0, )6(0) + o, ) (A4-6)

2(2)(co) = 'i(z)(— 20,; 0y, o, )3(® — 20, )+ 2(2)(0; o, ,~0, )3() (A4
+79(+ 20,0, -0, )5(0 + 20, )

2(3)((’)): 2(3)(_ 3031;0)1’0311(’)1)6(@_ 3601)"‘ 2‘(3)(_ C01;(’)1'(’311_601)6(@_ CO1) (A4-8)

+7Z(w,—o,,—o,, 0, B0+ o,)+ Z¥(+ 30,;-0,~0,,~0, )5(0 + 30, )

The Fourier transform and its inverse have been defined in Eqg. (A2-14).

12
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The solution of the equation of motion for the density operator, Eq. (19)

Let’s first recast ﬁT (t) in Eq. 19 as the sum of two components:
h.(t) = h(t)+f(t) (A4-9)

where ﬁ(t) collects all the terms that do not show any explicit dependence on the electrical field
and f(t) collects the others.
Eq. (19) is solved in a perturbative way by expanding the density matrix in a power series of E:
p(t)=p® +pY(t)+p?(t)+.. (A4-10)
The Hamiltonian h-(t) contains p(t) in the expectation values of the vibrational operators which
are consequently expanded in power series:
(6)=(0)" +(6)" +(6)" +. (A%-11)
where <©>(n) = Tr[@ﬁ(”)] and O is any of the vibrational operators.

Working in the Liouville space instead of the Hilbert one, and substituting the expansions in the
electrical field of Eg. (A4-9) into the equation of motion, Eq. (19), the following expressions for the
first three orders are obtained:

inp® (t) =Lp®(t)+ [V (t).p°| (A4-12)

inp? (t) = Lp? (1) + [A (t)+ O (1), pV (1) + [F @ (1), p°| (A4-13)

]
=
=

~—
~+
~—

—-h>
—

=

inp(t)=Lp 1)+ | (1),
() £

+
A4-14
+[ﬁ (t)+1?(t) @m] o), @(0)] ( )

Solution of Eq. (A4-12) provides p® and consequently any first order term: inserting it into Eq.
(A4-13), second order guantities can be worked out and so on' Further detail is given in Ref. 32:
here we just remind that to solve previous Equations we need to perform a Fourier transform and
therefore we get as a solution the density operator in the frequency domain. ** We remind that the
superscript in round brackets at the top of operators and expectation values correspond to the order
in electrical field.

13
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L is the Liouville operator and it is defined, in the frequency domain, as

50 +[A, 5(w)] (A4-15)

I
)
=
—~

e
—

©

%Lij,nm (CO)P(n"rﬁ ((D)

The expression of ht at the first three orders.
Here we show the Fourier components for h(t) and f(t) up to the third order. The ones belonging

to ﬁT(t) can be calculated from Eqg. (A4-9). ﬁT in the frequency and time domain can be

reconstructed from Eq. (A4-3)-(A4-5) and Eq. (A4-6)-(A4-8) respectively.

(DN

ﬁ(l)(i o, Fo,)=D,(F ®1)<N7(i 031;1(01»(1) N (+ (’°1><-i_7(i 031;1(01)> T

\/E —
(A4-16)
1@ (& 20, %0, F0,) = D, (F 20, N (£ 20,F0, Fo,)) K-
+D, ($ 20, )<ﬁ2 (i 20, F0,,Fo, )>(2 A,
_% F+ (1 2(01 ><-,|\-+ (i 20)1;1(1)1 ,1(,01 )>(2)-,|\_+
(A4-17)
4(2) + - (2) Co+ A — (2) ~
h (00, +w,) =D, (0 N* (0F 0, +o,)) " N' + Dy (0K, (0Fw, £, )) ',
C @),
—%F+(0)<T (0:Fw, tw,)) T
(A4-18)
h) (& 30, Fo, Fo, Fo,) = DA (¥ 30, ) N (£ 30,0, Fo, Fo, )>(3) N-
- 955'“ F (30, (T (+ 30, %0, Fo, Fo, )>(3)f-
(A4-19)

ﬁ(s)(i o, Fo, Fo, To,)=D,(F (ol)<l§l’ (+ 0, F0, Fo, +0, )>(3) N~

_—gjim F (1 o, )<'i" (i o, ;+0,,+o,,fo, )>(3)'i"

14
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(A4-20)

FO (&, Fw,) = - ﬁg; "G (o, N E, T
. o (A4-21)

T 0 z T+ 0 N~
R
?(2)(4_ 20,1, iml) = —L\/_ +(+ 2(,01)E+(D1 <N_(i o, 10)1)>(1)'i'+

eZh 2R (A4-22)

22\/5”‘ Es, (0_(to +col)>(1)N+

?(2)(0 +w1'—®1) _%G+(O)E+mll:E+m1<N_($ @, iw1)> 1 + E+“’1<N_(i ©, +(Dl)>(1)}-i-+
eh,R N . _ .
eBae (0 Foito)” ., (0 (oF0) R
(A4-23)
?(3)(i 3@1;1(01,1031,1031) =- R G_ ($ 3®1{< N (i 20, F 0, Foy )>(2) == }-i__
2.2 "
eh, [/.. N Q-
—2\/5 [<u (i 2(01,+(01,+(ol)> Eiml}N
(A4-24)
£ (+ 0, F0, Fo, To,)=
R B C (2) - o (2) o
- g\/g Gf(+ 0)1{<N (0;+(ol,icol)> Eso + <N (i 2col,+col,+a)l)> E.. }T
- 23% <0+(O;$m11i(’01 )>(2) Eiml + <0+ (i 20‘)1;1(")171(01»(2) Eiﬂh ]Ni

(A4-25)

In the following, the expectation values for the BOV vibrational operators in the frequency domain
are shown, in explicit form, from the first to the third order in the electrical field:

(8 (@) =0 (0, )" =F.O}T)" (p-26)

15
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(A4-27)
(0 ()" =0 (A4-28)
(0 (0)® =0 (A4-29)
<0+(J_r 20, Fo, ,Fo, )>( '=F (+ 20, )<'T'*(+ 20, F0,, +(nl)>(2)
(A4-30)
L(F2o, < (+ 0, Fo, > To,

(A4-31)
<0 _ (i 3o, ;Fo, Fo,,Fo, )>(3) =F (? 30)1)<'i'+ (30, Fo, Fo, Fo, )>(3)
1 _ - _ (2)
+ G_(¥ 3o, )< N*(+ 200, F 0, Foo, )> E-.,
(A4-32)
(0 (0)® =0 (A4-33)

=F (1 (ol)<'i'*(i o, ;+0,,To,, o, )>(3)

()

+%G_(¢wl)[ N+(i2w1;$w1,$wl)> E.., +<N+(01;0)1,—0)1)>(2)E_ }

+op

(A4-34)

16
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APPENDIX 5

Making use of the response theory, the following expressions are achieved for the polarizabilities

and hyperpolarizabilities®*:

— 2 A _ @
a(i (Dl,+(01) = m<R(i (Dl,+(01 )> (A5'l)
(% 3w, Fo, Fo, Fo,) = 8 <I§(i 3o,;F0, Fo, Fo, )> © (A5-2)
g,V 2nE;
- - _ 8 A - = (@)
y(i ®©,;+0,,T0, ,i(nl) = m <R(i ©F o, o, T, )> : (AS-3)

To write the expressions for the polarizabilities more than one convention is found in the
literature. We followed the same convention as in the textbook by Butcher and Cotter.*® The
electrical field is defined in Eq. (A4-2).

The Fourier components of R(t) at the first and third order are:

<f{(l)(i o, Fo, )> = e{

) |O°-
+
0
N
T
c
+
~
L
—
=
|
—_
[+
e
B
+
e
S
N
N
=
|
@D
-
N
Py
3
T
[}
|
—_
[+
e
B
+I
e
s
N
—<
=
T
~
=

<I§(i 3w, ;Fo,,Fo,,Fo, )>(3) = e{d_o + h, (a, >(0)}<N(i 3w, F0, Fo,,Fo, )>

2

)

T Ri <N+>(0)<07(i3031;1031,?0)1,?(01))

V2

el (0, (£ 20,70, %0,) " (N (0, 70,))”

(3)

=

N

—e sz

<N "+ 20, F0, Fo, )>(2) (0_(to,Fo, )>(l)

Ny

(A5-5)

17
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<I§(i o, Fo,,Fo,,to, )>(3) = e{% DZE (a, >(o)}<l§| (+ 0, F0, Fo, to, )>(3)
h R_ /e~ \0), _
—e Z\/Em <N+> (a_(+ (ol;+(ol,+col,ioal)>(3)

+e—= <LAJ+ (0F o, 0, )>(2)<N (o, Fo, )>(1) + <LAJ+ (20, F0, Fo, )>(0)<N’($ ®,;to, )>(1)J

—e n, R, [<N+ (0Fo, o, )>(2)<07(J_r ©,;Fo0, )>(l)<N (20, F o0, Fo, )>(2)<0 (Fo,to, )>(1)}

(A5-6)

18
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APPENDIX 6

TPA is often expressed in terms of absorption cross section, o:

ho,
2 =7 a,

where N is the number of molecules per unit volume and

_ 3w, ImX(S)(_ )} 0y, 0y~ )

(S1 units)

’ 28,C"Ng

_ 247[2(,01 ImX(S)(_ (’Ol;(’ol’ ('0]_’_(’01)

2 2
C My

a, (esu units)

Mo IS the linear refractive index and c the speed of light.

19
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