Supporting Material

MRCI investigation of different isomers of $\mathrm{Ni}_{2} \mathrm{O}_{2} \mathrm{H}_{2}{ }^{+}$

Olaf Hübner and Hans-Jörg Himmel
Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, E-mail: olaf.huebner@aci.uni-heidelberg.de

Details of the active spaces and reference spaces of the different sections of the energy profile for the approach of H_{2} to $\mathrm{Ni}_{2} \mathrm{O}_{2}{ }^{+}$

Table S1: Details of the CASSCF and MRCI calculations for the different sections of the path from $\mathrm{Ni}_{2} \mathrm{O}_{2}{ }^{+} \ldots \mathrm{H}_{2}$ to $\mathrm{Ni}_{2}(\mathrm{OH})_{2}{ }^{+}$: (1) Number, (2) symmetries, and (3) main atomic contributions of the orbitals of the active space, (4) number of states optimised within the CASSCF calculations and (5) selection criterion for the reference space of the subsequent MRCI calculations.

section	no	symmetries	main atomic contributions*	states	reference
0.0-0.1	14	$21-27 \mathrm{a}^{\prime} / 8-14 \mathrm{a}^{\prime \prime}$	2×2 p $3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s} 1 \times 4 \mathrm{~s} / 2 \times 2 \mathrm{p} 4 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s}$	2	0.05
0.1-0.3	14	$21-27 \mathrm{a}^{\prime} / 8-14 \mathrm{a}^{\prime \prime}$	$2 \times 2 \mathrm{p} 3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s} 1 \times 4 \mathrm{~s} / 2 \times 2 \mathrm{p} 4 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s}$	2	0.05
0.3-0.38335	13	$21-27 a^{\prime} / 9-14 a^{\prime \prime}$	$3 \times 2 \mathrm{p} 2 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s} 1 \times 4 \mathrm{~s} / 3 \times 2 \mathrm{p} 2 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s}$	1	0.05
0.38335-0.4	15	$20-27 \mathrm{a}^{\prime} / 8-14 \mathrm{a}^{\prime \prime}$	$3 \times 2 \mathrm{p} 3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s} 1 \times 4 \mathrm{~s} / 3 \times 2 \mathrm{p} 3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s}$	2	0.05
0.4-0.5	13	$21-27 \mathrm{a}^{\prime} / 9-14 \mathrm{a}^{\prime \prime}$	$2 \times 2 \mathrm{p} 3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s} 1 \times 4 \mathrm{~s} / 2 \times 2 \mathrm{p} 3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s}$	1	0.05
0.5-0.9	11	$22-27 \mathrm{a}^{\prime} / 10-14 \mathrm{a}^{\prime \prime}$	$1 \times 2 \mathrm{p} 3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s} 1 \times 4 \mathrm{~s} / 1 \times 2 \mathrm{p} 3 \times 3 \mathrm{~d} 1 \times 1 \mathrm{~s}$	1	0.01
0.9-1.0	7	$23-26 a^{\prime} / 11-13 a^{\prime \prime}$	$3 \times 3 \mathrm{~d} 1 \times 4 \mathrm{~s} / 3 \times 3 \mathrm{~d}$	1	CAS

${ }^{*} 3 \mathrm{~d}$ and 4 s mean Ni 3d and Ni 4 s , 2 p means O 2 p , and 1s means H 1 s .
The $\mathrm{Ni}_{2} \mathrm{O}_{2} \mathrm{H}_{2}{ }^{+}$product has 6 closed O 2 p or $\mathrm{O}-\mathrm{H} 2 \mathrm{p}-1$ s bonding orbitals and 6 open-shell 3 d orbitals with altogether 8 electrons and one 4 s orbital occupied with 1 electron. In contrast, the $\mathrm{Ni}_{2} \mathrm{O}_{2}{ }^{+}$reactant has essentially one open-shell O 2 p orbital contributing to combined $\mathrm{Ni}-\mathrm{O}$ orbitals and 4 open-shell Ni 3d orbitals with 4 electrons, while H_{2} has 1 essentially doubly occupied $1 \mathrm{~s}-\sigma$ orbital. Hence, going from the reactants to the products, the number of open-shell Ni 3d orbitals increases while the number of open-shell O 2 p orbitals decreases. This redistribution of the electrons is reflected by the observed change of the nature of active orbitals within the section $0.38-0.40$ of the calculated path. At point 0.38 , the active space of 13 orbitals consists of the 6 2 p orbitals from $\mathrm{O}\left(3 \mathrm{a}^{\prime}, 3 \mathrm{a}^{\prime \prime}\right)$, 43 d orbitals from $\mathrm{Ni}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{a}^{\prime \prime}\right)$, one 4 s orbital from $\mathrm{Ni}\left(\mathrm{a}^{\prime}\right)$, and both 1 s orbitals from $\mathrm{H}\left(\mathrm{a}^{\prime}, \mathrm{a}^{\prime \prime}\right)$. At point 0.40 , the active space comprises 42 p orbitals from O $\left(2 a^{\prime}, 2 a^{\prime \prime}\right), 63 d$ orbitals from $\mathrm{Ni}\left(3 a^{\prime}, 3 a^{\prime \prime}\right)$, and again one 4 s orbital from $\mathrm{Ni}\left(a^{\prime}\right)$ and both 1 s orbitals from $\mathrm{H}\left(\mathrm{a}^{\prime}, \mathrm{a}^{\prime \prime}\right)$. Therefore, to properly describe the electronic structure in this section, an active space containing 6 open-shell Ni 3 d and 6 open-shell O 2 p orbitals is used.

Occupation of the natural orbitals by CASSCF calculations for $\mathrm{Ni}_{2}(\mathbf{O H})_{2}{ }^{+}, \mathrm{NiONi}\left(\mathrm{OH}_{2}\right)^{+}$, and $(\mathrm{NiH})_{2} \mathrm{O}_{2}{ }^{+}$

The occupation of the natural orbitals of selected terms of $\mathrm{Ni}_{2}(\mathrm{OH})_{2}{ }^{+}$by CASSCF calculations is given in Table S2. According to their main contribution, the orbitals are assigned to the Ni 3d or 4 s atomic orbitals. For the ${ }^{4} \mathrm{~A}_{\mathrm{g}}$ and ${ }^{2} \mathrm{~B}_{1 \mathrm{u}}$ terms, the two a_{g} orbitals that have a total occupation of about two electrons are mixtures with about equal contributions from 3 d and 4 s orbitals, although classified in the Table as 3 d or 4 s . Taking as an example the ${ }^{6} \mathrm{~A}_{\mathrm{g}},{ }^{4} \mathrm{~B}_{1 \mathrm{u}}$, and ${ }^{2} \mathrm{~A}_{\mathrm{g}}$ terms, it is shown that the different terms of a given spin ladder have very similar occupations. The different spin ladders differ in principle by their 3d occupations.
The occupation of the natural orbitals of selectd terms of $\mathrm{NiONi}\left(\mathrm{OH}_{2}\right)^{+}$is given in Table S3. According to their main contribution, the orbitals are assigned to the 3 d orbitals of the central Ni atom (Ni1) or to the 3d or 4s orbitals of the terminal Ni atom (Ni2). For Ni1, there are two singly occupied 3 d orbitals, indicating a $3 \mathrm{~d}^{8}$ configuration. For Ni2, there are either two singly occupied 3 d and one 4 s orbital or one singly occupied 3 d orbital and an empty 4 s orbital, indicating a $3 \mathrm{~d}^{8} 4 \mathrm{~s}^{1}$ or a $3 d^{9}$ configuration.
Table S 4 shows the occupation of the natural orbitals of the lowest-lying terms ${ }^{2} \mathrm{~A}_{2}$ and ${ }^{2} \mathrm{~B}_{\mathrm{g}}$ of the cis and trans isomers of $(\mathrm{NiH})_{2} \mathrm{O}_{2}{ }^{+}$. For the ${ }^{2} \mathrm{~A}_{2}$ term, there are 4 orbitals that are essentially oxygen 2 p orbitals each one occupied by about 2 electrons and 7 orbitals that are essentially nickel 3d orbitals one of them occupied by 1 electron the other by about 2 electrons. Furthermore, there are two orbitals that are about one to one mixtures of Ni 3 d and O 2 p orbitals, occupied by altogether 2.1 electrons. Hence, for these orbitals, about one electron can be assigned to nickel and one to oxygen. Finally, there are 5 orbitals with contributions from the hydrogen 1s orbitals, the oxygen 2 p orbitals, and the nickel 3 d orbitals. For the orbital with an occupation of 1.93, the main contribution comes from O 2 p with contributions from H 1s. For the orbitals with occupations of 1.78 and 1.80 , the main contribution comes from Ni 3 d orbitals with contributions

Table S2: Occupation of natural orbitals of selected terms of $\mathrm{Ni}_{2}(\mathrm{OH})_{2}{ }^{+}$according to CASSCF calculations with 11,9 , or 5 active electrons at the MRCISD+Q structure of the ${ }^{6} \mathrm{~B}_{1 \mathrm{~g}}$ term (7s6p4d3f2g/5s4p3d2f/4s3p2d basis set).

Table S3: Occupation of the natural orbitals of selected terms of $\mathrm{NiONi}\left(\mathrm{OH}_{2}\right)^{+}$according to CASSCF calculations with 9,7 , or 5 active orbitals at the MRCISD+Q structure of the ${ }^{4} \mathrm{~A}_{2}\left(3 \mathrm{~d}^{9}\right)$ term (7s6p4d3f2g/5s4p3d2f/4s3p2d basis set).

$\mathrm{NiONiOH}_{2}{ }^{+}$	$\mathrm{Ni1} 3 \mathrm{~d}$					Ni 23 d					Ni 24 s		
Term	a_{1}	a_{1}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	a_{2}	a_{1}	a_{1}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	a_{2}	a_{1}		
${ }^{6} \mathrm{~A}_{1}\left(3 \mathrm{~d}^{8} 4 \mathrm{~s}^{1}\right)$	2.00	1.93	1.07	1.07	1.93	2.00	1.00	2.00	2.00	1.00	1.00		
${ }^{6} \mathrm{~A}_{2}\left(3 \mathrm{~d}^{8} 4 \mathrm{~s}^{1}\right)$	2.00	1.93	1.07	1.07	1.93	1.00	1.00	2.00	2.00	2.00	1.00		
${ }^{6} \mathrm{~B}_{1}\left(3 \mathrm{~d}^{8} 4 \mathrm{~s}^{1}\right)$	2.00	1.93	1.07	1.07	1.93	2.00	1.12	1.88	1.12	1.88	1.00		
${ }^{6} \mathrm{~B}_{2}\left(3 \mathrm{~d}^{8} 4 \mathrm{~s}^{1}\right)$	2.00	1.93	1.07	1.07	1.93	2.00	1.12	1.12	1.88	1.88	1.00		
${ }^{4} \mathrm{~A}_{1}\left(3 \mathrm{~d}^{9}\right)$	2.00	1.93	1.07	1.07	1.93	2.00	2.00	2.00	2.00	1.00	-		
${ }^{4} \mathrm{~A}_{2}\left(3 \mathrm{~d}^{9}\right)$	2.00	1.93	1.07	1.07	1.93	2.00	1.00	2.00	2.00	2.00	-		
${ }^{4} \mathrm{~B}_{1}\left(3 \mathrm{~d}^{9}\right)$	2.00	1.13	1.13	1.87	1.87	2.00	1.00	2.00	2.00	2.00	-		
${ }^{4} \mathrm{~B}_{2}\left(3 \mathrm{~d}^{9}\right)$	2.00	1.09	1.91	1.09	1.91	2.00	1.00	2.00	2.00	2.00	-		

from H 1s and O 2 p. The weakly occupied orbitals with occupations of 0.27 and 0.25 are more or less one to one mixtures of Ni 3 d and H 1 s orbitals. Unfortunately, the electrons cannot be assigned straightforwardly to the different atoms, in order to rationalise the electronic structure in a simple way. Nevertheless, since, for the b_{2} orbitals with strong 3d-2p mixing, one electron can be assigned to the O 2 p orbitals, and since among the other orbitals with considerable mixing there is one nearly doubly occupied orbital with the leading contribution from O 2 p and there are further O 2 p contributions in the other orbitals, one can assign 11 electrons to the O 2 p orbitals. This gives an oxidation state of -1.5 for each of the O and shows that the O atoms cannot be considered as closed shell parts of the molecule. For the ${ }^{2} \mathrm{~B}_{\mathrm{g}}$ term, the picture is practically the same.

Table S4: Occupation of natural orbitals of the lowest-lying terms of cis and trans $(\mathrm{NiH})_{2} \mathrm{O}_{2}{ }^{+}$ $\left(\mathrm{C}_{2 \mathrm{v}}\right.$ and $\mathrm{C}_{2 \mathrm{~h}}$) according to CASSCF calculations with 14 or 16 active orbitals at its MRCISD+Q structures (7s6p4d3f2g/5s4p3d2f/4s3p2d basis set).

