Supporting Information

Determination of coordination modes and estimation of the ³¹P-³¹P distances in heterogeneous catalyst by solid state double quantum filtered ³¹P NMR Spectroscopy

Si-Yong Zhang^{1,2}, Mei-Tao Wang², Qing-Hua Liu¹, Bing-Wen Hu¹*, Qun Chen¹*, He-Xing Li²*, Jean-Paul Amoureux³

1. Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, CHINA

2. Department of Chemistry, Shanghai Normal University, Shanghai 200062, CHINA

3. UCCS, University of Lille1, Villeneuve d'Ascq 59650, FRANCE

Email: <u>bwhu@phy.ecnu.edu.cn</u>, <u>qchen@ecnu.edu.cn</u>, hexing-li@shnu.edu.cn

CSA line-shape fitting of [1,2-Bis(diphenylphosphino)ethane] dichloropalladium(II)

The experiment was performed at on a Bruker AVANCEIII spectrometer at a magnetic field strength of 14 T with ¹H frequency of 600.13 MHz and 4mm rotor at spinning frequency of 4000 ± 2 Hz. ¹H decoupling of 108 kHz was applied. Recycle delay is 55s and the scan number is 100. The pound # in the Fig. S1 denotes the a small amount of ³¹P signal indirect-coupled with ¹⁰⁵Pd present to 22.2% having spin I=5/2 and this signal is not used for the fitting here. The ¹J (¹⁰⁵Pd, ³¹P) was estimated to be 80Hz. The fitting in Fig. S1 gives out the δ_{CSA1} =-116.73 ppm, η_1 =0.777, δ_{CSA2} =-79.53 ppm and η_2 =0.788 for a spin-pair. These values were used in SIMPSON simulations in Fig. 2. The home-made fitting program will run the SIMPSON with these CSA parameters and dipolar coupling parameter to simulate the $F_{DQ}^{symm}(d, \tau)$ curve and finally give out the values of the DQ function

 $F_{DQ}(t) = AF_{DQ}^{symm}(d,\tau)\exp(-2\tau/T_{\rm d}).$

Fig. S1: the fitting of the one-pulse ³¹P spectrum of [1,2-Bis(diphenylphosphino)ethane] dichloropalladium(II).

The effect of ¹J (¹⁰⁵Pd,³¹P)

Palladium system always have a small indirect spin-spin coupling ¹J (¹⁰⁵Pd, ³¹P) between ¹⁰⁵Pd and ³¹P. Thus we have to consider the effect of ¹J (¹⁰⁵Pd, ³¹P). The simulation of ¹J (105 Pd, 31 P)=0 Hz and ¹J (105 Pd, 31 P)=120 Hz for BR2₂¹ are shown in Fig. S2(a) and (b), respectively. Obviously, the introduce of ¹J (¹⁰⁵Pd,³¹P) will decrease the signal when the build-up time is long. However, in the real system, there is a strong decay due to T_2 factor and a potential lost due to imperfect decoupling of proton channel. So we could introduce the factor $A^*\exp(-2t/T_d)$ here, where T_d defines the lost due to T_2 and A the lost due to imperfect decoupling. The Fig. S2(c) and (d) is the result of the multiplication of (a) and (b) with the factor $A^* \exp(-2t/T_d)$ respectively. Now the two curves are more or less overlapped. Meanwhile, only 22.2% ¹⁰⁵Pd has an indirect spin-spin coupling with ³¹P, that means, only small part of ³¹P should take into account ¹J (¹⁰⁵Pd,³¹P) effect (which is obvious in Fig. S1). It should be also mentioned that the quadrupolar coupling constant and the orientation of the EFG tensor have no influence on the build-up curve (overlapped with (a) and (b)). Consequently we could neglect the effect of ${}^{1}J$ (${}^{105}Pd$, ${}^{31}P$) when dealing with the palladium system.

Fig. S2. The build-up curve of $BR2_2^{1}$ simulated by SIMPSON. Two identical ³¹P with $\delta_{CSA} = 0$ were used. The dipolar coupling between two ³¹P is 616 Hz and the ¹J

 $(^{105}\text{Pd},^{31}\text{P}) = 100 \text{ Hz}$. B₀= 14 T. v_R=12 kHz. The π pulse length of BR2₂¹ is 19.25 µs. (c) and (d) is the result of multiplication of (a) and (b) with $A^*\exp(-2t/T_d)$, respectively. A = 0.65 and $T_d = 8.0$ ms.

The deconvolution of one-pulse experiment of Pd-complex

Fig. S3. The deconvolution of one pulse experiment of Pd-complex whose CP version is also shown in Fig. 3b. The black dot line is the experimental data and the green line is the fitting result. A mixture of 60% Gauss and 40% Lorentz line-shape was employed here. The relative proportion of left peak and right peak are 62.8% and 37.2%. Scan number is 1024 and recycle delay is 68 s. $B_0=14$ T, $v_R=12$ kHz.