Supporting Information

The influence of π - π -stacking on the light-harvesting properties of perylene

bisimide antennas that are covalently linked to a [60]fullerene

Christiane C. Hofmann¹, Stefan M. Lindner², Michaela Ruppert³, Andreas Hirsch³, Saif A. Haque⁴, Mukundan Thelakkat² and Jürgen Köhler^{1*}

- ¹ Department of Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
- ² Applied Functional Polymers, University of Bayreuth, D-95440 Bayreuth, Germany

³ Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

⁴ Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW72AZ, UK

^{*} Corresponding author. E-mail: juergen.koehler@uni-bayreuth.de

Synthesis

The synthetic route for the preparation of fullerene with two covalently linked perylene bisimides, A_2 -F (3) is shown in scheme 1. The hydroxyl functionalized perylene bisimide (1) reported elsewhere¹,² was coupled with malonyl dichloride to get the disubstituted malonate (2). The cyclopropanation of C₆₀ was carried out by a modified Bingel reaction³ of the malonate 2 with iodine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in toluene⁴. This coupling reaction was performed with good yield of 47% to obtain PBI-fullerene-PBI triad, A₂-F (3).

Scheme 1: Synthetic strategy of A_2 -F (PBI-C₆₀ -PBI triad). *Reagents and conditions:* (I) malonyl dichloride, pyridine, CH₂Cl₂; (II) C₆₀, I₂, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), toluene.

Experimental

The synthesis of compound **1** and **A-F** were reported earlier^{1,2}. All reagents and solvents were of analytical grade or purified using standard methods.

Synthesis of the symmetrical substituted malonate (2)

1 (100 mg, 0.14 mmol) was dissolved in CH_2CI_2 (50 cm³) and pyridine (14 µl, 0.17 mmol) was added under protecting gas. The mixture was cooled in an ice bath and malonyl dichloride (10 µl, 0.11 mmol) in CH_2CI_2 (10 cm³) was added dropwise. The mixture was stirred for 12h at room temperature. The product was purified by column chromatography (silica gel, CH_2CI_2 /ethyl acetate 80/20) to yield **2** (104 mg, 99%) as a red solid. λ_{max} (CH_2CI_2)/nm 462, 491 and 526 (ϵ /dm³ mol⁻¹ cm⁻¹ 24 000, 51 000 and 56 000); v_{max} (film)/cm⁻¹ 3054, 2986, 2929, 2857, 1695, 1655, 1595, 1421, 1342, 1266, 1258 and 748; δ_{H} (300 MHz; CDCI₃) 0.83 (12H, t, *J* 6.57 Hz, CH₃), 1.30 (40H, m, CH₂), 1.50 (8H, m, CH₂), 1.75 (8H, m, CH₂), 1.90 (4H, m, CH₂), 2.20 (4H, m, CH₂), 3.40 (2H, s, OCCH₂CO), 4.15 (8H, m, NCH₂, CH₂O), 5.10 (2H, m, N-C*H*(CH₂)₂), 8.10 (4H, d, *J* 8.15 Hz, Ar-H), 8.20 (4H, d, *J* 8.15 Hz, Ar-H), 8.30 (4H, d, *J* 7.98 Hz, Ar-H) and 8.40 (4H, d, *J* 7.55 Hz, Ar-H); δ_C (75MHz; CDCI₃) 14.10, 22.60, 25.50, 26.70, 27.00, 27.80, 28.25, 29.20, 29.60, 31.80, 32.20, 42.00, 44.00, 55.00, 65.50, 122.60, 125.80, 129.00, 131.00, 134.10, 162.80 and 166.60; *m/z* (FAB) 1469 (M⁺).

Synthesis of A₂-F (PBI-C₆₀-PBI) (3)

To a solution of C₆₀ (74 mg, 0.10 mmol) in toluene (150 cm³), iodine (18 mg, 0.07 mmol) and **2** (100 mg, 0.07 mmol) were added and the mixture was degassed with argon for 30 minutes. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (20 µl, 0.14 mmol) in toluene (15 cm³) was added dropwise within one hour and the reaction was stirred over night. The product was purified with column chromatography (silica gel, toluene/ethyl acetate 90/10) to yield **3** (70 mg, 47 %) as a dark-red solid. λ_{max} (CH₂Cl₂)/nm 260, 325, 461, 492 and 528; ν_{max} (film)/cm⁻¹ 3054, 2928, 2304, 1695, 1655, 1595, 1421, 1342, 1257 and 757; δ_{H} (400 MHz; CDCl₃) 0.83 (12H, t, *J* 6.53 Hz, CH₃), 1.30 (40H, m, CH₂), 1.60 (8H, m, CH₂), 1.90 (8H, m, CH₂), 2.20 (4H, m, CH₂), 4.30 (4H, m, NCH₂), 4.53 (2H, t, *J* 6.22 Hz, CH₂O), 5.10 (2H, m, N-C*H*(CH₂)₂), 8.20 (8H, m, Ar-H), 8.40 (8H, m, Ar-H); δ_{C} (75MHz; CDCl₃) 14.10, 22.60, 25.50, 26.70, 27.00, 27.80, 28.25, 29.20, 29.60, 31.80, 32.20, 42.00, 52.00, 55.00, 65.50, 71.60,

122.60, 122.80, 123.00, 125.80, 129.30, 131.00, 134.10, 140.85, 141.90, 142.10, 142.90, 142.95, 143.00, 143.20, 143.80, 144.50, 144.60, 144.80, 145.10, 145.20, 145.40, 163.10, 163.90; m/z (FAB) 720 (C_{60}^+), 2188 (M^+).

¹ Ch. C. Hofmann, S. M. Lindner, M. Ruppert, A. Hirsch, S. A. Haque, M. Thelakkat, and J. Köhler *J. Phys. Chem. B*, 2010, DOI: 10.1021/jp1035585.

² A. Wicklein, A. Lang, M. Muth, and M. Thelakkat, *J. Am. Chem. Soc.* 2009, **131**, 14442-14453.

³ C. Bingel, *Chem. Ber.*, 1993, **126**, 1957-1959.

⁴ J.-F. Nierengarten, V. Gramlich, F. Cardullo, and F. Diederich, Angew. *Chem. Int. Ed.*, 1996, **35**, 2101-2103.