Supporting Information

The influence of π - π-stacking on the light-harvesting properties of perylene bisimide antennas that are covalently linked to a [60]fullerene

Christiane C. Hofmann ${ }^{1}$, Stefan M. Lindner ${ }^{2}$, Michaela Ruppert ${ }^{3}$, Andreas Hirsch ${ }^{3}$, Saif A. Haque ${ }^{4}$, Mukundan Thelakkat ${ }^{2}$ and Jürgen Köhler ${ }^{1^{*}}$
${ }^{1}$ Department of Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
${ }^{2}$ Applied Functional Polymers, University of Bayreuth, D-95440 Bayreuth, Germany
${ }^{3}$ Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
${ }^{4}$ Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW72AZ, UK

* Corresponding author. E-mail: juergen.koehler@uni-bayreuth.de

Synthesis

The synthetic route for the preparation of fullerene with two covalently linked perylene bisimides, $A_{2}-\mathbf{F}(3)$ is shown in scheme 1 . The hydroxyl functionalized perylene bisimide (1) reported elsewhere ${ }^{1}{ }^{2}$, was coupled with malonyl dichloride to get the disubstituted malonate (2). The cyclopropanation of C_{60} was carried out by a modified Bingel reaction ${ }^{3}$ of the malonate 2 with iodine and 1,8-diazabicyclo[5.4.0]undec-7ene (DBU) in toluene ${ }^{4}$. This coupling reaction was performed with good yield of 47% to obtain PBI-fullerene-PBI triad, $\mathrm{A}_{2}-\mathrm{F}(3)$.

(I)

2

Scheme 1: Synthetic strategy of $\mathbf{A}_{\mathbf{2}}-\mathbf{F}$ (PBI- $\mathrm{C}_{60}-\mathrm{PBI}$ triad). Reagents and conditions:
(I) malonyl dichloride, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (II) $\mathrm{C}_{60}, \mathrm{I}_{2}, 1,8$-diazabicyclo[5.4.0]undec-7ene (DBU), toluene.

Experimental

The synthesis of compound 1 and A-F were reported earlier ${ }^{1,2}$. All reagents and solvents were of analytical grade or purified using standard methods.

Synthesis of the symmetrical substituted malonate (2)

$1(100 \mathrm{mg}, 0.14 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and pyridine ($14 \mu \mathrm{l}, 0.17$ mmol) was added under protecting gas. The mixture was cooled in an ice bath and malonyl dichloride ($10 \mu \mathrm{l}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise. The mixture was stirred for 12 h at room temperature. The product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $80 / 20$) to yield 2 ($104 \mathrm{mg}, 99 \%$) as a red solid. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 462$, 491 and $526\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 24000,51000\right.$ and 56 000); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3054,2986,2929,2857,1695,1655,1595,1421,1342$, 1266, 1258 and 748 ; $\delta_{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83\left(12 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.57 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.30(40 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.50\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.75\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.20\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $3.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{2} \mathrm{CO}\right), 4.15\left(8 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}, \mathrm{CH}_{2} \mathrm{O}\right), 5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 8.10$ ($4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.15 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 8.20 ($4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.15 \mathrm{~Hz}$, Ar-H), 8.30 ($4 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.98 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$) and $8.40(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.55 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.10,22.60,25.50,26.70$, $27.00,27.80,28.25,29.20,29.60,31.80,32.20,42.00,44.00,55.00,65.50,122.60$, 125.80, 129.00, 131.00, 134.10, 162.80 and 166.60; $m / z(F A B) 1469\left(\mathrm{M}^{+}\right)$.

Synthesis of $\mathrm{A}_{2}-\mathrm{F}\left(\mathrm{PBI}-\mathrm{C}_{60}-\mathrm{PBI}\right)(3)$

To a solution of $\mathrm{C}_{60}(74 \mathrm{mg}, 0.10 \mathrm{mmol})$ in toluene $\left(150 \mathrm{~cm}^{3}\right)$, iodine ($18 \mathrm{mg}, 0.07$ $\mathrm{mmol})$ and $2(100 \mathrm{mg}, 0.07 \mathrm{mmol})$ were added and the mixture was degassed with argon for 30 minutes. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) ($20 \mu \mathrm{l}, 0.14 \mathrm{mmol}$) in toluene ($15 \mathrm{~cm}^{3}$) was added dropwise within one hour and the reaction was stirred over night. The product was purified with column chromatography (silica gel, toluene/ethyl acetate $90 / 10$) to yield $3(70 \mathrm{mg}, 47 \%)$ as a dark-red solid. $\lambda_{\max }$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 260,325,461,492$ and 528; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3054,2928,2304,1695$, 1655, 1595, 1421, 1342, 1257 and 757 ; $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83(12 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.53 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.30\left(40 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.60\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.90\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.20\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $4.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.22 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 8.20$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $8.40(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 14.10, 22.60, 25.50, 26.70, 27.00, 27.80, 28.25, 29.20, 29.60, 31.80, 32.20, 42.00, 52.00, 55.00, 65.50, 71.60,
122.60, 122.80, 123.00, 125.80, 129.30, 131.00, 134.10, 140.85, 141.90, 142.10, 142.90, 142.95, 143.00, 143.20, 143.80, 144.50, 144.60, 144.80, 145.10, 145.20, 145.40, 163.10, 163.90; m/z (FAB) $720\left(\mathrm{C}_{60}{ }^{+}\right)$, $2188\left(\mathrm{M}^{+}\right)$.

[^0]
[^0]: 1 Ch. C. Hofmann, S. M. Lindner, M. Ruppert, A. Hirsch, S. A. Haque, M. Thelakkat, and J. Köhler J. Phys. Chem. B, 2010, DOI: 10.1021/jp1035585.

 2 A. Wicklein, A. Lang, M. Muth, and M. Thelakkat, J. Am. Chem. Soc. 2009, 131, 14442-14453.
 ${ }^{3}$ C. Bingel, Chem. Ber., 1993, 126, 1957-1959.
 4 J.-F. Nierengarten, V. Gramlich, F. Cardullo, and F. Diederich, Angew. Chem. Int. Ed., 1996, 35, 2101-2103.

