Molecular dynamics simulations of ionic liquid-vapour interfaces: Effect of cation symmetry on structure at the interface

S.S. Sarangi, S.G. Raju, and S. Balasubramanian¹

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India.

Electronic Supplementary Information

 $^{^1\}mathrm{Author}$ for Correspondence. Email:bala@jncasr.ac.in

Figure S1: Mass density profiles of all the systems along the surface normal direction. The inflection points of the profiles at the interface are matched.

Figure S2: Number density profile of methyl groups along the surface normal direction. The inflection points of the profiles at the interface are matched.

Figure S3: Scaled number density profile of methyl groups along the surface normal direction. The inflection points of the profiles at the interface are matched.

Figure S4: Cation number density profiles along the surface normal direction. The inflection points of the profiles at the interface are matched.

Figure S5: Scaled cation number density profiles of all liquids along the surface normal direction. Inset: Corresponding data for anions. The inflection points of the profiles at the interface are matched.

Figure S6: (a) Charge density profiles as a function of distance along the surface normal. (b) Electrostatic potential profiles in the surface normal direction. The inflection points of the profiles at the interface are matched.