Supporting Information for

## A Facile Route to Ordered Mesoporous Alumina Supported Catalysts and Their Catalytic Activities for CO Oxidation

Zhen-Xing Li, Fu-Bo Shi, Le-Le Li, Tao Zhang, and Chun-Hua Yan\*

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications & PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China

Synthesis of mesoporous alumina: 1.0 g of Pluronic P123 (Mav = 5800,  $EO_{20}PO_{70}EO_{20}$ ) was dissolved in 20 mL of ethanol at room temperature (RT). Then 1.04g of citric acid and 2.04 g (10 mmol) of aluminum nitrate were added into the above solution with vigorous stirring. The mixture are covered with PE film, stirred at RT for about 5 h, and then put into a 40 °C drying oven to undergo the solvent evaporation process. After two days aging, calcination was carried out by slowly increasing temperature from RT to 400 °C (1 °C min<sup>-1</sup> ramping rate) and heating at 400 °C for 4 h under air.

**Mesoporous Alumina Supported Pt by the conventional impregnation method (CIM):** 0.05 M chloroplatinic acid ( $H_2PtCl_6.6H_2O$ ) solution was added in distilled water containing mesoporous alumina powder under stirring. Then, a 0.5 M excess of NaBH<sub>4</sub> solution was used to initiate deposition of Pt nanoparticles. After stirring for 12 h, the solid was recovered by centrifugation, extensively washed with distilled water, and dried at 40 °C overnight. The product was then calcined in air at 300 °C for 2 h. The Pt content of catalyst was determined on an inductively coupled plasma-atomic emission spectrometer (ICP-AES).

Synthesis of mesoporous alumina supported Ag and Pd: A typical synthesis procedure, 1.0 g of Pluronic P123 (Mav = 5800,  $EO_{20}PO_{70}EO_{20}$ ) was dissolved in 20 mL of ethanol at room temperature (RT). Then 1.04g of citric acid as reducing agent and acidity adjustment, 2.04 g (10 mmol) of aluminum nitrate, and a certain amount of Ag(acac) or Pd(acac)<sub>2</sub> was added into the above solution with vigorous stirring. The mixture are covered with PE film, stirred at RT for about 5 h, and then put into a 40 °C drying oven to undergo the solvent evaporation process. After two days aging, calcination was carried out by slowly increasing temperature from RT to 400 °C (1 °C min<sup>-1</sup> ramping rate) and heating at 400 °C for 4 h under air. The Ag and Pd content of catalyst was determined on an inductively coupled plasma-atomic emission spectrometer (ICP-AES).

**CO oxidization test:** A home-made flow reactor system including a stainless steel reaction tube  $(1 \times 60 \text{ cm})$  was used for the catalytic test. In a typical CO oxidation experiment, 100 mg Pt/Al<sub>2</sub>O<sub>3</sub> and 4 g quartz sand were mixed as catalyst, and the experiment was carried out under a flow of reactant gas mixture (1% CO, 20% O<sub>2</sub>, balance He) at a rate of 50 mLmin<sup>-1</sup>. The composition of the gas was monitored on-line by gas chromatography (Agilent technologies, GC-7890A).



Fig. S1 TEM image of Pt supported on mesoporous alumina use  $H_2PtCl_6$  as the Pt precursor.



Fig. S2 TEM image of the sample prepared after thermal treatment at 40 °C.



Fig. S3 TEM image of Pt supported on mesoporous alumina nitric acid instead of citric acid.



**Fig. S4** TEM image of the Pt loaded on mesoporous mesoporous alumina by the conventional impregnation method (CIM).



Fig. S5 TEM images of the 1.3 wt% Pt supported on mesoporous alumina calcination at 700 °C.



**Fig. S6** CO conversion for the 1.3 wt% Pt supported on mesoporous alumina and the catalyst produced by the conventional impregnation method (CIM) at 140 °C after annealing at different temperatures.



Fig. S7 Recycle catalytic reactions of the 1.3 wt% Pt supported on mesoporous alumina.



**Fig. S8** (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution curves of the mesoporous alumina supported Ag and Pd.