Supplementary Information

Photodynamical simulations of cytosine: characterization of the ultra fast bi-exponential UV deactivation

Mario Barbatti, Adélia J. A. Aquino, Jaroslaw J. Szymczak, Dana Nachtigallová

and Hans Lischka

Molecule	Medium	pН	Tech	pump (nm)	probe (nm)	τ_1 (ps)	τ_2 (ps)	τ ₃ (ps)	Ref.
dC	W	7	F	260	330		0.76±0.12		1
dCMP	W	7	F	260	330		0.95±0.12		
С	V		А	267	800		3.2		2
С	W	7	А	267	320		1.1±0.2		3
С	W	7	F	267	330	$0.20{\pm}0.02$	1.30 ± 0.07		
dC	W	7	F	267	330	0.18 ± 0.02	0.92 ± 0.06		
dCMP	W	7	F	267	330	0.27 ± 0.02	$1.4{\pm}0.2$		
С	W	6.8	А	265	570		1.0 ± 0.2		4
C-	W	13	А	265	570			13.3±0.4	
dC+	W	0.08	А	265	570		0.63 ± 0.06		
dC	W	6.8	Α	265	570		1.0 ± 0.1		
5FC	W	6.8	А	265	570			88±5	
5mC+	W	1.5	Α	265	570			2.57 ± 0.22	
5mC	W	6.8	Α	265	570			7.2 ± 0.4	
5mC-	W	13	Α	265	570			250±30	
5mdC	W	6.8	Α	265	570			7.2 ± 0.2	
4acC	W	6.8	Α	265	570			280 ± 30	
С	V		Α	250	200	< 0.05	0.82	3.2	5
С	V		Α	267	2×400	0.16 ± 0.02	1.86±0.19		6
С	V		Α	260	800	0.12	3.8		7
С	V		Α	267	800	0.21	2.2	long	
С	V		Α	270	800	0.22	2.3	19	
С	V		Α	280	800	< 0.1	1.2	55	
С	V		Α	290	800	< 0.1	1.1	≥150	
С	W	6.8	Α	263	570		0.72		8
5FC	W	6.8	Α	263	570,600,630			73±4	
5FC	Ethanol		А	263	570			73±4	
5FC	DMSO		А	263	570			73±4	

Table S1: Time constants for deactivation of UV-excited cytosine and cytosine derivatives.

 $\label{eq:constraint} \begin{array}{l} C-cytosine; \ dC-cytidine \ ; \ dCMP-cytidine \ monophosphate \ ; \ 5FC-5-Fluorocytosine; \ 5mC-5-methylcytosine \ ; \ 5mdC-5-methylcytosine \ ; \ 5mdC-5-methylcytosine \ ; \ W-water \ ; \ V-vapor \ ; \ DMSO-dimethylsulfoxide \ ; \ A-absorption \ ; \ F-Fluorescence \end{array}$

Table	S2 –	Correspondence	between	the	several	notations	for	the	conical	intersections	in
cytosin	ne.										

Ref.	L.		¥~	À
Present work	oop-NH ₂	semi-planar	C6-puckered	oop-O
8, 9	$(GS/n_N,\pi^*)_{CI}$	$(GS/n_0,\pi^*)_{CI}$		
10	$(OP)_{X}$	())))	$(Eth)_{x}$	
11	$(n_N,\pi^*)_Y$	$(\mathbf{n}_0, \pi^*)_{\mathbf{x}}$	$(Eth)_{x}$	
12	n_N/S_0	n_0/S_0	$\pi\pi/S_0$	
13	$(\sigma s/n_v \pi^*)_{cr}$	$(\sigma s/n_o \pi^*)_{cr}$	$(\alpha s/\pi\pi^*)_{cr}$	
14	$(g_{3/11_N}\pi)_{C1}$	(23/110/2)/	$\frac{1}{\pi\pi^*/S}$	
15			лл 750 ЕТН	
16			(π, π^*)	
17, 18	$\mathbf{P}(a;01)$	$\mathbf{P}(a;01)$	$(\pi - \pi^{-1})_{CI}$	
19	$K_{x}(Ci01)_{sofa}$ $CI_{c01\beta}$	$\mathbf{K}_{\mathbf{X}}(\mathcal{Cl}01)$	$R_{x}(cto1)_{twist}$ $CI_{c01\alpha}$	

Fig. S1 – Molecular orbitals at the SA-4-CASSCF(14,10)/6-31G* level of calculation for the ground state minimum and the S₁ ($n\pi^*$) minimum geometries.

Min S₁

Fig. S3 – Geometry of four minima on the S_1/S_0 crossing seam of cytosine optimized at SA-4-

CASSCF(14,10)/6-31G* level.

Fig. S4 – Linearly interpolated pathways between the Franck-Condon (FC) region and the three lowest-energy MXSs (Top) and between the FC region, the S_1 minimum and the three MXSs (bottom). Computed at SA-4-CASSCF(14,10)/6-31G* level. Only three states are shown for clarity.

References

1 J. Peon and A. H. Zewail, *Chem. Phys. Lett.*, 2001, **348**, 255.

2 H. Kang, K. T. Lee, B. Jung, Y. J. Ko and S. K. Kim, *J. Am. Chem. Soc.*, 2002, **124**, 12958.

3 A. Sharonov, T. Gustavsson, V. Carré, E. Renault and D. Markovitsi, *Chem. Phys. Lett.*, 2003, **380**, 173.

4 R. J. Malone, A. M. Miller and B. Kohler, *Photochem. Photobiol.*, 2003, 77, 158.

5 S. Ullrich, T. Schultz, M. Z. Zgierski and A. Stolow, *Phys. Chem. Chem. Phys.*, 2004, **6**, 2796.

6 C. Canuel, M. Mons, F. Piuzzi, B. Tardivel, I. Dimicoli and M. Elhanine, *J. Chem. Phys.*, 2005, **122**, 074316.

7 K. Kosma, C. Schröter, E. Samoylova, I. V. Hertel and T. Schultz, *J. Am. Chem. Soc.*, 2009, **131**, 16939.

8 L. Blancafort, B. Cohen, P. M. Hare, B. Kohler and M. A. Robb, *J. Phys. Chem. A*, 2005, **109**, 4431.

9 N. Ismail, L. Blancafort, M. Olivucci, B. Kohler and M. A. Robb, J. Am. Chem. Soc., 2002, **124**, 6818.

10 L. Blancafort, M. J. Bearpark and M. A. Robb, in *Radiation Induced Molecular Phenomena in Nucleic Acid*, ed. M. K. Shukla and J. Leszczynski, Springer, Netherlands, 2008.

11 L. Blancafort, *Photochem. Photobiol.*, 2007, **83**, 603.

12 H. R. Hudock and T. J. Martinez, *Chemphyschem*, 2008, 9, 2486.

13 M. Merchan and L. Serrano-Andres, J. Am. Chem. Soc., 2003, **125**, 8108.

14 M. Z. Zgierski, S. Patchkovskii, T. Fujiwara and E. C. Lim, J. Phys. Chem. A, 2005, 109, 9384.

15 A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys., 2004, 6, 2763.

16 K. Tomic, J. Tatchen and C. M. Marian, J. Phys. Chem. A, 2005, **109**, 8410.

17 K. A. Kistler and S. Matsika, J. Phys. Chem. A, 2007, **111**, 2650.

18 K. A. Kistler and S. Matsika, J. Chem. Phys., 2008, 128, 215102.

19 Z. Lan, E. Fabiano and W. Thiel, J. Phys. Chem. B, 2009, 113, 3548.

Cartesian coordinates (Å) of the ground state minimum, of the first excited state minimum and of the minima on the crossing seam for cytosine optimized at CASSCF and MR-CISD levels.

SA-4-CASSCF(14,10)/6-31G*

Min S ₀			
N	-0.010527	0.022158	0.069853
Ν	2.359536	-0.001439	0.055202
N	-1.163924	-0.027506	2.054645
C	1,169017	-0.002461	-0.669276
C	2.405775	-0.006236	1,417830
C	1 261710	-0.000267	2 125954
C	0 023067	0 014593	1 350128
0	1 188206	-0 014775	-1 868864
ч	3 196209	-0 011244	-0 483239
н	3 380643	-0 021353	1 864034
н	1 249297	-0 026789	3 196863
н	-1 172926	0 460374	2 923688
н	-1 964927	0 162723	1 490985
11	1.901927	0.102/25	1.190905
Min S.			
	1 000000	-0 667907	_0 021218
N	2 110341	0.962047	-0.031310 1 421828
IN N	_1 097576		_0 22207/
C	2 176923	-0.938037	0.565626
C	0 851353	1 529059	1 685734
C	-0.246162	0 027857	1 020529
C	-0.240102	_0 17/315	1.030539
0	2 116188	_0 489729	0.239300
U U	2 8252/2	1 022217	2 109625
п ц	0 844718	2527453	2.109023
п u	-1 226222	1 252072	2.073303
п u	-1.020532	_0 /27972	-0 183513
и П	_0 789/13		-1 150052
11	-0.709415	-1.390302	-1.139032
MXS semi-pla	inar		
N	1.247339	-0.592949	-0.133646
Ν	2.066006	0.862938	1.506969
Ν	-1.059559	-0.998518	-0.246775
С	2.132067	-0.105604	0.584894
С	0.914214	1.663111	1.550634
С	-0.261791	0.954998	0.994133
С	-0.082442	-0.132029	0.234524
0	3.498054	-0.380462	0.460620
Н	2.808370	0.960221	2.162539
Н	0.823206	2.248635	2.444624
Н	-1.245911	1.304670	1.245930
Н	-1.976884	-0.605441	-0.263555
Н	-0.813423	-1.377275	-1.137704

MXS oop-NH₂

Ň	0.051029	-0.342346	0.278564
Ν	2.275978	0.151918	0.109732
Ν	-0.540695	1.515912	1.716264
С	1.070180	0.186462	-0.553925
С	2.367623	-0.121132	1.487814
С	1.257521	-0.082631	2.273556
С	0.013329	0.242471	1.561057
0	0.910395	0.539787	-1.678633
Н	3.087916	0.373819	-0.419085
Н	3.354987	-0.318641	1.854164
Н	1.298798	-0.217438	3.336037
Н	0.112224	2.267271	1.817670
Н	-1.265038	1.737951	1.066338
MXS C6-puck	ered		
N N	-0.109425	0.241573	0.163502
N	2.296317	0.662399	0.546984
Ν	-1.237947	-0.843015	1.860263
С	0.956766	0.878816	-0.280732
С	2.316857	-0.638741	0.846211
С	1.189721	-0.996596	1.720301
С	-0.034812	-0.573210	1.243741
0	1.145993	1.579309	-1.232401
Н	3.032152	0.980016	-0.056162
Н	2.829375	-1.351072	0.215962
Н	1.343230	-1.079500	2.781005
Н	-1.181639	-1.274039	2.756465
Н	-1.909001	-0.107473	1.807021
MXS oop-O			
N	-0.058584	0.077461	0.066490
N	2 359818	0 051992	0 051917
N	-1.172304	-0.058811	2.054599

S oop-O			
N	-0.058584	0.077461	0.066490
N	2.359818	0.051992	0.051917
N	-1.172304	-0.058811	2.054599
С	1.152103	-0.018492	-0.565087
С	2.389688	0.042736	1.459609
С	1.234800	-0.033180	2.128728
С	-0.024634	-0.020881	1.342000
0	1.197972	-1.649653	-0.575425
Н	3.121291	0.453040	-0.450232
Н	3.355171	0.010127	1.923275
Н	1.204078	-0.111436	3.197888
Н	-1.174139	0.074029	3.037704
Н	-2.035077	0.037488	1.568978

MR-CISD(6,5)/SA-4-CASSCF(14,10)/6-31G*

Min S_0			
N	-0.018758	0.015852	0.068684
N	2.349142	-0.005499	0.066805
N	-1.166998	-0.030522	2.053566
С	1.163668	0.004501	-0.673191
С	2.401890	-0.008329	1.406587
С	1.261977	0.002463	2.130907
С	0.033803	0.016547	1.376105
0	1 195069	0 015252	-1 861245
с Н	3 173164	-0 009309	-0 479576
и И	3 361328	-0 024384	1 857765
и И	1 280338	-0 020665	3 195543
11 11	1 100520	0.020005	2 012011
п	1 052006	0.427902	1 169160
н	-1.953096	0.1010/0	1.400400
Min S ₁			
N	1 224434	-0 617009	-0 070442
N	2 112710	0 923626	1 465957
N	_1 088683	-0.960521	_0 296361
C	2 184587	-0 085400	0.563373
C	0 950465	1 521202	1 6500/0
C	0.850405	1.551303	1 011250
C	-0.244335	0.954491	1.011350
C	-0.0/11/9	-0.184740	0.200135
0	3.406914	-0.541636	0.297950
H	2.880652	1.081195	2.066285
H	0.830838	2.467893	2.154604
Н	-1.202587	1.406496	1.132825
H	-1.933049	-0.450540	-0.467871
Н	-0.779023	-1.419105	-1.133052
MXS semi-nla	inar		
NIZES Serie pro	1 275659	-0 410674	-0 229806
N	2 074143	0 783937	1 619872
N		_1 108125	
IN C	2 150022	-1.100125	0.143433
C	2.130023	-0.001033	1 447071
C	0.930000	1.000000	1.44/9/1
C	-0.2/5099	0.996453	0.9/649/
C	-0.072854	-0.097353	0.210/32
0	3.461898	-0.478820	0.408595
H	2.388628	0.479540	2.5058/5
H	0.909269	2.491529	2.116006
Н	-1.239025	1.356276	1.235665
H	-1.925648	-0.870010	0.133747
Н	-0.979457	-1.265454	-1.138534
MXS oon NH			
	2	0 2/002/	0 256670
IN	0.0/355/	-0.348034	0.2506/0
N	2.301586	0.066198	0.082115
N ~	-0.588471	1.493534	1.728981
C	1.085129	0.267145	-0.530916
C	2.373330	-0.137255	1.477434
С	1.272294	-0.028664	2.265259
C	0.023714	0.244325	1.567371
0	0.922357	0.806921	-1.585633
Н	3.090102	0.449274	-0.380366
Н	3.351217	-0.348516	1.853680
Н	1.345677	-0.089469	3.323134
Н	0.037754	2.282533	1.742639
Н	-1.360197	1.648126	1.112760

MXS C6-puckered

Ν	-0.132435	0.293465	0.211341
Ν	2.318361	0.580827	0.455612
N	-1.215007	-0.864954	1.846582
С	0.965019	0.938352	-0.236597
С	2.301941	-0.714459	0.861656
С	1.215035	-0.974561	1.788166
С	-0.052962	-0.535594	1.249995
0	1.074767	1.735787	-1.107639
Н	3.040240	0.835796	-0.195901
Н	2.858794	-1.465983	0.352577
Н	1.370120	-0.643248	2.800770
Н	-1.191621	-1.512923	2.573506
Н	-1.997109	-0.320603	1.610768
MXS <i>oop-</i> O			
Ň	-0.089779	-0.086244	0.077185
N	2.335327	0.166375	0.102879
Ν	-1.166465	0.024387	2.083651
С	1.089145	-0.069206	-0.608373
С	2.411919	-0.021738	1.443920
С	1.230460	-0.071848	2.113141
С	-0.023383	0.021562	1.361609
0	1.767737	-1.188123	-1.063036
Н	3.093685	0.538578	-0.411741
Н	3.355623	-0.203483	1.901222
Н	1.204465	-0.214366	3.172212
Н	-1.175202	0.388651	3.007165
Н	-2.006983	0.145047	1.553556