•

Electronic Supplementary Information

'Nanoreactors' for photocatalytic H₂ evolution in oil-water biphase systems

Jiehua Liu, *^a Xiangfeng Wei,^a Yaolun Yu,^c Xin Wang,^c Wei-Qiao Deng^{*b} and Xue-Wei Liu^{*a} ^a School of Physical & Mathematical Sciences, Nanyang Technological University, 637371 Singapore E-mail: <u>xuewei@ntu.edu.sg</u> and <u>liuj0042@ntu.edu.sg</u>;

^b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China; E-mail: dengwq@dicp.ac.cn; ° School of Chemical and Biomedical Engineering, Nanyang Technological University, 639798

Singapore

Experimental Section

In situ Preparation of CdS and Pt@CdS nanosheets

Nanoporous CdS nanosheets were synthesized by a facile method. In a typical route, Cd(OAc)₂·2H₂O (2.00 mmol) was first added into deionized wate (10 mL) to get a clear solution; then milky emulsion was formed by the addition of N, N-Dimethylethanolamine (4 mL); after 0.2 mol L⁻¹ Na₂S solution (10 mL) was added and dispersed with aid of supersonic, the emulsion was placed in an oven for 12 hours at 70 °C. The CdS nanosheets were formed in solution. To load Pt nanoparticles, H₂PtCl₆ solution and 1 mL methanol are added into CdS nanosheets aqueous solution and then irradiated it for 5 hours under simulated sunlight with strong stirring and. Finally, 68 g suspension of Pt@CdS catalyst (5.0 mg catalyst in 1 g suspension) was prepared to be directly used for photocatalytic reaction.

Characterizations

FESEM images, transmission electron micrographs (TEMs) and HRTEM were obtained with JEOL JSM 6700F, JEOL JEM-1400 and JEOL JEM-2100 respectively. Photoluminescence spectra were recorded by Steady-state Fluorescence spectroflurometer. UV-Vis absorption spectra were measured by a JASCO V-670 spectrophotometer. H₂ and Organic substances were analyzed with GC2014 and Agilent 6879N, respectively. N₂ adsorption-desorption isotherms were conducted at 77 K on a Micromeritics Tristar 3000 analyzer. The BET surface areas and pore-size distribution curves were concluded using adsorption data.

Photocatalytic reaction

The photocatalytic reactions were carried out in a 600 mL cylindrical glass reactor with quartz top-window connected to a closed gas circulation. In single systems, 0.010 g of 1% Pt@CdS was suspended in 100 mL of aqueous solution containing 0.1 M Na₂S and 0.02 M Na₂SO₃ solution as the sacrificing agent. In oil/H₂O systems, 0.010 g of 1% Pt@CdS was suspended in 10-30 mL oil and 100 mL of aqueous solution containing 0.1 M Na₂S and 0.02 M Na₂SO₃ solution as the sacrificing agent. The systems are conducted under irradiation by simulated sunlight. The amount of H₂ produced was analyzed using a gas chromatography (GC2014). The average rates of H₂ evolution were recoded in the first 3 h.

Figure S1: N₂ adsorption–desorption isotherms and nanopore size distribution of catalyst nanosheets.

Figure S2: HRTEM image and EDX spectra of 1.0% Pt@CdS catalyst.

Figure S3: Fluorescence spectra of CdS and Pt@CdS nanocatalysts H_2O solution with 397 nm as the maximum excitation wavelength at room temperature.

Figure S4: UV-Visible spectra of 1.0%Pt@CdS in H₂O solution.

Figure S5: GC curves of the amount of H_2 evolution in hexane/water biphase system in different time.