Supplementary material to: Effects of counterpoise correction and basis set extrapolation on the MP2 geometries of hydrogen bonded dimers of second row element hydrides

A. Daniel Boese and Georg Jansen Fakultät für Chemie, Universität Duisburg Essen, Universitätsstr. 5, D-45117 Essen, Germany.

Martin Torheyden

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.

Sebastian Höfener and Wim Klopper Abteilung für Theoretische Chemie, Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Postfach 6980, D-76049 Karlsruhe, Germany.

TABLE I: Intra- and intermolecular geometry parameters and energies of the NH₃, H₂O and HF dimers as obtained by counterpoise corrected as well as uncorrected geometry optimizations with the aug-cc-pVTZ to aug-cc-pV5Z basis set as well as basis set extrapolated results. Site names used to specify distances and angles may be inferred from figure 1 of the paper. Distances R are given in Ångstrom, angles Θ in degrees, and energies E in kJ/mol.

		not countonnoise connected					counterpoise corrected				
		ΤZ	QZ	5Z	ext(TQZ)	ext(Q5Z)	ΤZ	QZ	5Z	ext(TQZ)	ext(Q5Z)
$(NH_{3})_{2}$	R_{DA}	3.234	3.218	3.213	3.202	3.207	3.232	3.219	3.213	3.208	3.208
asymm.	θ_{1DA}	17.07	19.47	20.70	22.39	22.03	22.92	22.14	22.29	22.32	22.32
,	θ_{3AD}	76.31	72.24	70.14	67.52	67.98	66.96	68.01	67.70	67.63	67.62
	R_{1D}	1.016	1.014	1.014	1.014	1.013	1.016	1.014	1.014	1.013	1.013
	R_{3A}	1.013	1.011	1.011	1.011	1.011	1.013	1.011	1.011	1.011	1.011
	R_{2D}	1.012	1.010	1.010	1.010	1.009	1.012	1.010	1.010	1.010	1.009
	R_{4A}	1.013	1.011	1.010	1.010	1.010	1.012	1.011	1.010	1.010	1.010
	θ_{1D2}	107.20	107.32	107.36	107.37	107.39	107.18	107.30	107.35	107.36	107.39
	θ_{3A4}	106.82	106.93	106.99	107.00	107.05	106.85	106.96	107.00	107.01	107.04
	θ_{2D2}	106.46	106.57	106.62	106.63	106.67	106.48	106.58	106.63	106.64	106.67
	θ_{AAA}	106.71	106.81	106.86	106.85	106.89	106.68	106.80	106.85	106.85	106.89
	Eint	-13.83	-13.56	-13.39	-13.40	-13.27	-12.66	-13.02	-13.13	-13.26	-13.26
	Estab	-13.76	-13.48	-13.32	-13.32	-13.20	-12.60	-12.95	-13.06	-13.19	-13.18
(NIT)	-stab	9.100	2 1 C 4	2 1 C 4	9.101	9.109	2 100	9.175	9.100	9.165	9.104
$(NH_3)_2$	κ_{DA}	3.108	3.104 49.27	3.104	3.101	3.103	3.190	3.173	3.109	3.100	3.104
cyclic	θ_{1DA}	42.34	42.37	42.38	42.42	42.40	42.55	42.47	42.44	42.42	42.42
	κ_{1D}	1.014	1.012	1.012	1.012	1.012	1.014	1.012	1.012	1.012	1.012
	κ_{2D}	1.012	1.010	1.010	1.010	1.010	1.012	1.010	1.010	1.010	1.010
	θ_{1D2}	107.09	107.19	107.23	107.23	107.27	107.06	107.18	107.22	107.23	107.26
	θ_{2D2}	106.57	100.08	100.72	106.73	106.76	106.56	106.68	106.72	100.73	106.76
	$E_{\rm int}$	-13.62	-13.43	-13.29	-13.34	-13.18	-12.60	-12.94	-13.06	-13.19	-13.19
	$E_{\rm stab}$	-13.50	-13.38	-13.23	-13.29	-13.12	-12.55	-12.89	-13.01	-13.14	-13.14
$(NH_3)_2$	R_{DA}	3.250	3.243	3.243	3.237	3.241	3.270	3.254	3.249	3.244	3.243
linear	θ_{1DA}	12.94	13.48	13.64	13.90	13.85	14.18	13.98	13.98	13.98	13.98
	θ_{3AD}	140.14	141.11	141.37	141.94	141.76	142.48	142.02	142.02	142.02	142.00
	R_{1D}	1.017	1.015	1.015	1.014	1.014	1.017	1.015	1.014	1.014	1.014
	R_{3A}	1.012	1.010	1.010	1.010	1.010	1.012	1.010	1.010	1.010	1.010
	R_{2D}	1.012	1.010	1.010	1.010	1.009	1.012	1.010	1.010	1.009	1.009
	R_{4A}	1.013	1.011	1.010	1.010	1.010	1.013	1.011	1.010	1.010	1.010
	θ_{1D2}	107.18	107.30	107.34	107.35	107.37	107.16	107.28	107.33	107.34	107.37
	θ_{3A4}	106.84	106.95	107.00	107.00	107.05	106.84	106.95	107.00	107.01	107.04
	θ_{2D2}	106.43	106.54	106.58	106.58	106.62	106.43	106.54	106.58	106.59	106.62
	θ_{4A4}	106.48	106.57	106.62	106.62	106.65	106.46	106.57	106.61	106.62	106.64
	$E_{\rm int}$	-13.63	-13.33	-13.14	-13.14	-13.00	-12.40	-12.76	-12.87	-13.00	-12.99
	Estab	-13.54	-13.23	-13.05	-13.04	-12.90	-12.32	-12.67	-12.78	-12.90	-12.90
$(H_2O)_2$	R_{DA}	2.907	2.903	2.904	2.898	2.905	2.933	2.918	2.913	2.908	2.907
	$\theta_{H_D DA}$	5.55	5.50	5.42	5.58	5.30	5.54	5.53	5.55	5.58	5.60
	θ_{acc} "	123.35	124.39	124.82	124.54	125.26	124.72	125.01	124.99	124.95	124.87
	$R_{H_D D}$	0.969	0.966	0.966	0.966	0.966	0.968	0.966	0.966	0.965	0.966
	R_{HD}	0.960	0.958	0.957	0.957	0.957	0.960	0.958	0.957	0.957	0.957
	R_{HA}	0.962	0.960	0.959	0.959	0.959	0.962	0.960	0.959	0.959	0.959
	$\theta_{H_D D H}$	104.48	104.64	104.69	104.74	104.75	104.44	104.61	104.69	104.71	104.76
	θ_{HAH}	104.53	104.69	104.77	104.79	104.84	104.52	104.69	104.77	104.79	104.83
	$E_{\rm int}$	-21.86	-21.49	-21.24	-21.29	-21.10	-19.89	-20.50	-20.69	-20.88	-20.90
	$E_{\rm stab}$	-21.69	-21.31	-21.06	-21.10	-20.93	-19.74	-20.34	-20.52	-20.71	-20.73
$(HF)_2$	R_{DA}	2.746	2.736	2.739	2.732	2.740	2.771	2.753	2.749	2.745	2.744
	$\theta_{H_D D A}$	6.37	6.41	6.32	6.60	6.26	6.74	6.64	6.71	6.72	6.77
	θ_{HAD}	111.12	111.49	111.92	111.32	112.20	111.66	111.80	111.68	111.64	111.53
	$R_{H_D D}$	0.928	0.925	0.925	0.924	0.925	0.928	0.925	0.925	0.924	0.925
	\bar{R}_{HA}	0.925	0.922	0.921	0.921	0.921	0.925	0.922	0.921	0.921	0.921
	$E_{\rm int}$	-19.85	-19.54	-19.30	-19.35	-19.26	-17.83	-18.44	-18.62	-18.74	-18.80
	$E_{\rm stab}$	-19.72	-19.39	-19.16	-19.19	-19.13	-17.71	-18.31	-18.48	-18.61	-18.66

 a θ_{acc} is the angle between the bisection line of the HOH angle of the hydrogen bond acceptor water monomer and the OO-axis.

TABLE II: Intra- and intermolecular geometry parameters and energies of the NH₃, H₂O and HF dimers as obtained by counterpoise corrected and uncorrected geometry optimizations with the aug'-cc-pVTZ to aug'-cc-pV5Z basis set as well as basis set extrapolated results. Site names used to specify distances and angles may be inferred from figure 1 of the paper. Distances R are given in Ångstrom, angles Θ in degrees, and energies E in kJ/mol.

			not co	unterpoise	corrected			coun	terpoise co	orrected	
		TZ	QZ	$5\overline{Z}$	$\mathrm{cbs}(\mathrm{TQZ})$	cbs(Q5Z)	TZ	QZ	5Z	cbs(TQZ)	cbs(Q5Z)
$(\mathrm{NH}_3)_2$	R_{DA}	3.236	3.214	3.209	3.193	3.207	3.245	3.221	3.215	3.210	3.210
asymm.	θ_{1DA}	17.32	20.92	21.70	25.08	22.46	21.21	22.12	22.25	21.70	21.74
	θ_{3AD}	76.10	70.09	68.58	63.40	67.31	69.67	68.21	68.03	68.55	68.56
	R_{1D}	1.016	1.014	1.014	1.013	1.013	1.016	1.014	1.014	1.013	1.013
	R_{3A}	1.013	1.011	1.011	1.011	1.011	1.013	1.011	1.011	1.010	1.010
	R_{2D}	1.012	1.010	1.010	1.009	1.009	1.012	1.010	1.010	1.009	1.009
	R_{4A}	1.012	1.011	1.010	1.010	1.010	1.012	1.011	1.010	1.009	1.010
	θ_{1D2}	107.17	107.31	107.37	107.37	107.42	107.13	107.27	107.34	107.36	107.42
	θ_{3A4}	106.79	106.93	107.01	107.03	107.08	106.79	106.92	106.99	107.00	107.07
	θ_{2D2}	106.44	106.56	106.63	106.64	106.64	106.43	106.55	106.61	106.63	106.69
	θ_{4A4}	106.68	106.79	106.86	106.84	106.92	106.64	106.77	106.84	106.85	106.92
	$E_{\rm stab}$	-13.20	-13.23	-13.19	-13.30	-13.16	-12.31	-12.79	-13.00	-13.14	-13.20
$(\mathrm{H}_2\mathrm{O})_2$	R_{DA}	2.911	2.906	2.906	2.903	2.906	2.936	2.918	2.913	2.907	2.907
	$\theta_{H_D D A}$	5.45	5.60	5.46	5.76	5.46	5.61	5.51	5.57	5.53	5.59
	$ heta_{acc}$ a	123.53	124.41	124.91	124.75	125.19	124.46	125.14	124.96	125.13	124.97
	$R_{H_D D}$	0.969	0.966	0.966	0.965	0.965	0.968	0.966	0.966	0.965	0.965
	R_{HD}	0.960	0.958	0.957	0.957	0.957	0.960	0.958	0.957	0.957	0.957
	R_{HA}	0.962	0.960	0.959	0.958	0.959	0.962	0.960	0.959	0.958	0.959
	$\theta_{H_D D H}$	104.47	104.65	104.70	104.74	104.76	104.46	104.60	104.70	104.70	104.77
	θ_{HAH}	104.52	104.69	104.75	104.79	104.85	104.51	104.68	104.76	104.78	104.85
	$E_{\rm stab}$	-21.07	-20.90	-20.81	-20.80	-20.75	-19.61	-20.21	-20.48	-20.63	-20.74
$(HF)_2$	R_{DA}	2.750	2.742	2.741	2.736	2.741	2.774	2.753	2.749	2.744	2.744
	$\theta_{H_D D A}$	6.34	6.49	6.52	6.71	6.61	6.75	6.57	6.66	6.58	6.78
	θ_{HAD}	111.57	111.61	111.84	111.39	111.91	111.87	111.92	111.75	111.87	111.53
	$R_{H_D D}$	0.928	0.925	0.925	0.924	0.924	0.928	0.925	0.925	0.923	0.924
	R_{HA}	0.925	0.922	0.921	0.920	0.921	0.925	0.922	0.921	0.920	0.921
	$E_{\rm stab}$	-19.14	-18.90	-18.80	-18.77	-18.76	-17.65	-18.20	-18.44	-18.56	-18.67

^a θ_{acc} is the angle between the bisection line of the HOH angle of the hydrogen bond acceptor water monomer and the OO-axis.

TABLE III: Intra- and intermolecular geometry parameters of the NH₃, H₂O and HF dimers as obtained by counterpoise corrected and uncorrected geometry optimizations with the aug-cc-pVTZ to aug-cc-pV5Z basis set as well as basis set extrapolated results. For MP2, all electrons are fully correlated. Site names used to specify distances and angles may be inferred from figure 1 of the paper. Distances R are given in Ångstrom and angles Θ in degrees.

t of the paper. Distances it are given in Angstrom and angles O in degrees.											
			not cou	interpoise	corrected		counterpoise corrected				
		TZ	QZ	5Z	ext(TQZ)	ext(Q5Z)	TZ	QZ	$5\mathrm{Z}$	ext(TQZ)	ext(Q5Z)
$(\mathrm{NH}_3)_2$	R_{DA}	3.238	3.218	3.210		3.203	3.231	3.218	3.213	3.207	3.207
asymm.	θ_{1DA}	9.98	17.27	18.34		18.88	22.92	21.87	21.77	21.81	21.75
	θ_{3AD}	88.52	75.83	73.73		72.63	66.75	68.24	68.33	68.25	68.30
	R_{1D}	1.014	1.013	1.012		1.011	1.013	1.012	1.011	1.012	1.011
	R_{3A}	1.010	1.009	1.008		1.008	1.011	1.009	1.009	1.009	1.008
	R_{2D}	1.010	1.008	1.007		1.007	1.010	1.008	1.007	1.008	1.007
	R_{4A}	1.010	1.009	1.008		1.007	1.010	1.008	1.008	1.008	1.007
	θ_{1D2}	107.39	107.51	107.55		107.58	107.44	107.48	107.53	107.48	107.58
	θ_{3A4}	107.00	107.09	107.15		107.21	107.10	107.13	107.18	107.13	107.23
	θ_{2D2}	106.68	106.75	106.81		106.86	106.74	106.76	106.82	106.75	106.86
	θ_{4A4}	106.97	106.99	107.05		107.11	106.94	106.98	107.03	106.97	107.07
$(\mathrm{NH}_3)_2$	R_{DA}	3.150	3.156	3.157	3.161	3.158	3.189	3.173	3.168	3.163	3.162
cyclic	θ_{1DA}	42.07	42.30	42.26	42.50	42.22	42.47	42.39	42.36	42.35	42.34
	R_{1D}	1.012	1.010	1.010	1.010	1.009	1.012	1.010	1.010	1.010	1.009
	R_{2D}	1.010	1.008	1.008	1.008	1.007	1.010	1.008	1.008	1.008	1.007
	θ_{1D2}	107.38	107.38	107.41	107.36	107.44	107.32	107.35	107.40	107.35	107.45
	θ_{2D2}	106.84	106.85	106.91	106.83	106.95	106.82	106.85	106.90	106.85	106.95
$(\mathrm{NH}_3)_2$	R_{DA}	3.248	3.232	3.230	3.214	3.227	3.269	3.252	3.247	3.241	3.240
linear	θ_{1DA}	8.01	13.10	12.94	18.08	12.79	14.06	13.85	13.84	13.84	13.82
	θ_{3AD}	130.09	140.39	139.85	149.62	139.33	142.03	141.65	141.67	141.74	141.60
	R_{1D}	1.014	1.013	1.012	1.013	1.012	1.014	1.013	1.012	1.012	1.011
	R_{3A}	1.010	1.008	1.008	1.008	1.007	1.010	1.008	1.007	1.008	1.007
	R_{2D}	1.010	1.008	1.007	1.008	1.007	1.010	1.008	1.007	1.008	1.007
	R_{4A}	1.010	1.009	1.008	1.008	1.007	1.010	1.009	1.008	1.008	1.007
	θ_{1D2}	107.39	107.48	107.53	107.49	107.56	107.43	107.46	107.51	107.46	107.56
	θ_{3A4}	107.05	107.12	107.18	107.12	107.23	107.09	107.13	107.18	107.13	107.22
	θ_{2D2}	106.66	106.72	106.77	106.71	106.81	106.70	106.72	106.77	106.71	106.82
	θ_{4A4}	106.76	106.75	106.79	106.66	106.82	106.71	106.74	106.79	106.73	106.83
$(H_2O)_2$	R_{DA}	2.888	2.893	2.894	2.894	2.894	2.931	2.915	2.909	2.905	2.904
	$\theta_{H_D D A}$	5.03	5.60	4.95	6.26	4.26	5.44	5.47	5.48	5.55	5.52
	θ_{acc}	123.21	124.12	125.07	123.88	126.23	125.34	125.47	125.52	125.27	125.47
	$R_{H_D D}$	0.965	0.965	0.964	0.966	0.964	0.966	0.965	0.964	0.965	0.964
	R_{HD}	0.958	0.957	0.956	0.956	0.955	0.958	0.957	0.956	0.957	0.955
	R_{HA}	0.960	0.958	0.958	0.958	0.957	0.960	0.958	0.958	0.958	0.957
	$\theta_{H_D D H}$	104.65	104.78	104.81	104.86	104.84	104.59	104.72	104.82	104.80	104.91
	θ_{HAH}	104.66	104.81	104.90	104.89	104.98	104.69	104.81	104.90	104.88	104.99
$(HF)_2$	R_{DA}	2.726	2.729	2.727	2.734	2.724	2.770	2.751	2.747	2.742	2.742
	$\theta_{H_D DA}$	5.80	6.25	5.56	6.78	5.00	0.68	0.61	0.67	6.71	6.73
	θ_{HAD}	111.70	111.64	112.92	111.17	113.90	111.95	112.00	111.93	111.79	111.81
	$K_{H_D D}$	0.926	0.924	0.924	0.924	0.923	0.926	0.924	0.923	0.924	0.923
	R_{HA}	0.923	0.921	0.920	0.920	0.920	0.923	0.921	0.920	0.920	0.920

^a θ_{acc} is the angle between the bisection line of the HOH angle of the hydrogen bond acceptor water monomer and the OO-axis.

TABLE IV: Intra- and intermolecular geometry parameters and energies of the NH₃, H₂O and HF dimers as obtained by MP2-F12 geometry optimizations. Site names used to specify distances and angles may be inferred from figure 1 of the paper. Distances R are given in Ångstrom, angles Θ in degrees, and energies E in kJ/mol.

Molecule		ΤZ	QZ	$QZ/R12^b$
$(NH_3)_2$	R_{DA}	3.205	3.208	· · · · · ·
asymm.	$ heta_{1DA}$	22.28	21.84	
	$ heta_{3AD}$	67.72	68.34	
	R_{1D}	1.014	1.014	
	R_{3A}	1.011	1.011	
	R_{2D}	1.010	1.010	
	$R_{4A}^{}$	1.010	1.010	
	θ_{1D2}	107.36	107.39	
	$\theta_{3.4.4}$	107.01	107.04	
	θ_{2D2}	106.62	106.66	
	θ_{AAA}	106.85	106.88	
	E int	-13.25	-13.26	
$(NH_2)_2$		3 163	3 163	
(1113)2		49.44	40.42	
cyclic	θ_{1DA}	42.44	42.43	
	R_{1D}	1.012	1.012	
	R_{2D}	1.010	1.010	
	θ_{1D2}	107.23	107.26	
	$ heta_{2D2}$	106.72	106.75	
	$E_{ m int}$	-13.19	-13.20	
$(\mathrm{NH}_3)_2$	R_{DA}	3.241	3.243	
linear	$ heta_{1DA}$	13.78	13.81	
	θ_{3AD}	141.67	141.63	
	R_{1D}	1.015	1.014	
	R_{3A}	1.010	1.010	
	R_{2D}	1.010	1.010	
	R_{4A}	1.010	1.010	
	$ heta_{1D2}$	107.34	107.37	
	θ_{3A4}	107.01	107.04	
	θ_{2D2}	106.59	106.61	
	θ_{AAA}	106.61	106.65	
	$E_{\rm int}$	-12.97	-12.98	
$(H_2O)_2$	R_{DA}	2.906	2.906	2.907
	$\theta_{H_{D}DA}$	5.74	5.52	5.57
	θ_{acc}^{a}	124.22	124.83	124.87
	R_{H-D}	0.966	0.966	0.966
	Rup	0.958	0.957	0.958
	Bus	0.959	0.959	0.960
	AU DU	104 76	104 74	104 76
	A H A H	104.82	104.82	104.83
	E.	_20.81	-20.87	104.00
$(\mathrm{HF})_{2}$	BDA	2.745	2.742	
()2	ALL DA	6.72	6.62	
		0.72	0.02	
	\mathcal{O}_{HAD}	0.025	111.00	
	n_{H_DD}	0.920	0.920	
	κ_{HA}	0.922	0.922	
	$E_{ m int}$	-18.70	-18.80	

 a θ_{acc} is the angle between the bisection line of the HOH angle of the hydrogen bond acceptor water monomer and the OO-axis. b A specifically designed QZ basis set, in conjunction with MP2-R12, see E. Kordel, C. Villani and W. Klopper *Mol. Phys.*, 2007.