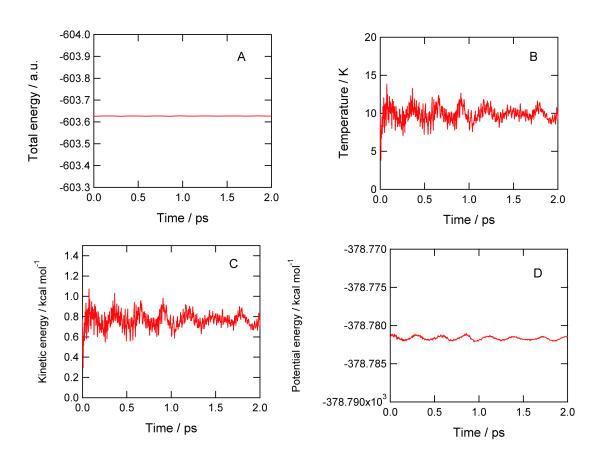
SUPPORTING INFORMATION

Ionization Dynamics of Aminopyridine Dimer: A Direct Ab-initio Molecular


Dynamics (MD) Study

Hiroto TACHIKAWA and Takahiro FUKUZUMI

Division of Materials Chemistry, Graduate School of Engineering,

Hokkaido University, Sapporo 060-8628, JAPAN

1. Direct ab-initio MD calculation of (AP)₂ at 10 K.

Figure S1. Result of direct ab-initio MD calculation of 2-aminopyridine dimer $(AP)_2$ at 10 K. Time profiles of (A) total energy, (B) temperature, (C) kinetic energy, and (D) potential energy.

2. Ionization dynamics of $(AP)_2$.

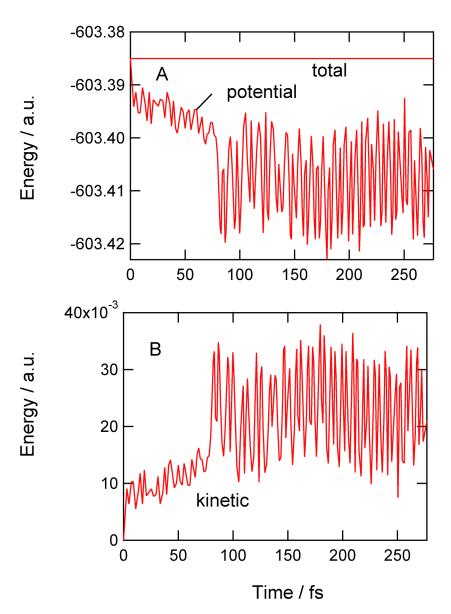
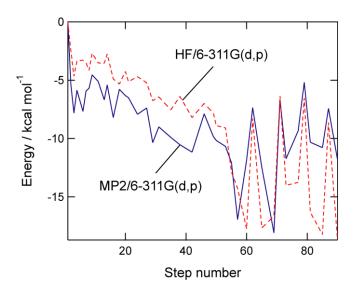



Figure S2. Time propagation of potential, kinetic and total energies of the ionization reaction of 2-aminopyridine dimer (AP)₂ obtained by direct ab-initio MD calculation.

3. Comparison of potential energies calculated by HF and MP2 methods.

Figure S3. Time propagation of potential energy of the ionization reaction of 2-aminopyridine dimer. Direct ab-initio MD calculation was carried out at the HF/6-311G(d,p) level.

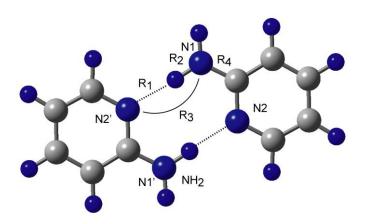

4. Harmonic vibrational frequencies

Table S1. Harmonic vibrational frequencies of (AP)₂⁺ (Cs).

	frequency / cm ⁻¹					
$(AP)_2^+(Cs)$						
HF	3906(a')	3716(a')	3645(a')	3513(a')	3400(a')	3383(a')
/6-311G(d,p)	3374(a')	3710(a')	3358(a')	3355(a')	3400(a')	3333(a')
70 311 C(u,p)	1861(a')	1846(a')	1829(a')	1726(a')	1641(a')	1630(a')
	1626(a')	1584(a')	1561(a')	1522(a')	1510(a')	1466(a')
	1429(a')	1402(a')	1350(a')	1331(a')	1273(a')	1264(a')
	1231(a')	1227(a')	1160(a')	1154(a')	1137(a")	1105(a")
	1105(a')	1086(a')	1070(a')	1041(a')	1029(a")	1015(a")

	1014(a")	946(a")	913(a')	898(a")	881(a')	860(a")
	814(a")	808(a")	793(a")	738(a")	706(a")	680(a')
	661(a')	604(a')	594(a')	565(a")	509(a')	504(a")
	454(a')	445(a")	424(a")	405(a")	225(a")	210(a")
	142(a')	104(a")	80(a')	70(a')	44(a")	22(a")
B3LYP	3673(a')	3484(a')	3239(a')	3232(a')	3217(a')	3212(a')
/6-311++G(d,p)	3207(a')	3199(a')	3193(a')	3185(a')	3159(a')	2950(a')
	1729(a')	1713(a')	1677(a')	1588(a')	1582(a')	1555(a')
	1520(a')	1486(a')	1467(a')	1431(a')	1409(a')	1385(a')
	1368(a')	1359(a')	1300(a')	1284(a')	1196(a')	1186(a')
	1176(a')	1157(a')	1110(a')	1086(a')	1055(a")	1051(a')
	1046(a')	1021(a")	1013(a")	1008(a')	991(?a)	990(?a)
	965(a")	885(a")	868(a")	862(a')	853(a')	802(a")
	790(a")	761(a")	736(a")	724(a")	696(a")	641(a')
	632(a')	578(a')	561(a')	526(a")	491(a')	485(a")
	431(a')	404(a")	396(a")	381(a")	209(a")	187(a")
	164(a')	101(a")	90(a')	87(a')	44(a")	22(a")

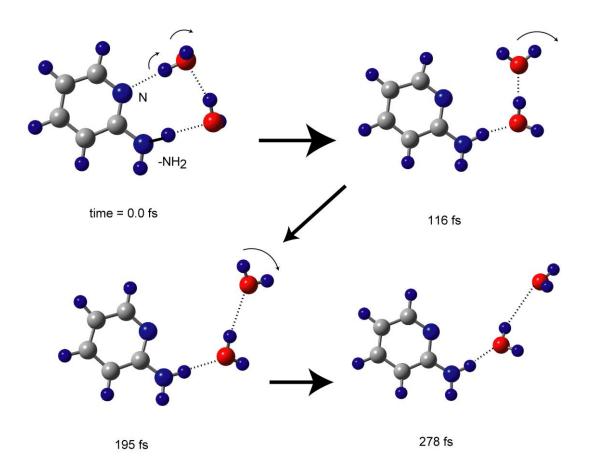
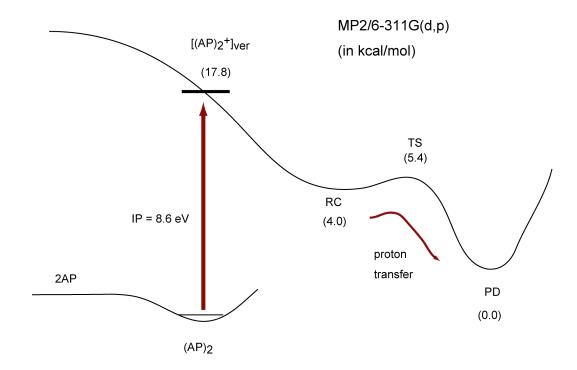

5. Optimized Structure of (AP)₂

Table S2. Optimized geometries of $(AP)_2$ and $(AP)_2^+$ calculated at the HF/6-311G(d,p), MP2/6-311G(d,p) and B3PW91/6-311G(d,p) level. The bond distances are in A.


(AP) ₂	parameter	HF	MP2	B3PW91
	R_1	2.204	1.997	1.965
	R_2	0.999	1.021	1.026
	R_3	2.204	1.997	1.965
	R ₂ '	0989	1.004	1.003
(AP) ₂ ⁺	parameter	HF	MP2	B3PW91
	R_1	1.013	1.054	1.051
	R_2	1.982	1.749	1.783
	R_3	2.092	1.937	1.921
	R ₂ '	1.006	1.020	1.020

6. Ionization dynamics of AP-(H₂O)₂ complex

Figure S4. Snapshots of the ionization reaction of hydrated 2-aminopyridine dimer. Direct ab-initio MD calculation was carried out at the HF/6-311G(d,p) level.

7. Energy diagram of the proton transfer reaction

Figure S5. Potential energy diagram of the ionization reaction of 2-aminopyridine dimer calculated at the MP2/6-311G(d,p) level.

8. HOMO and LUMO of (AP)2, $[(AP)_2^+]_{ver}$ and PD

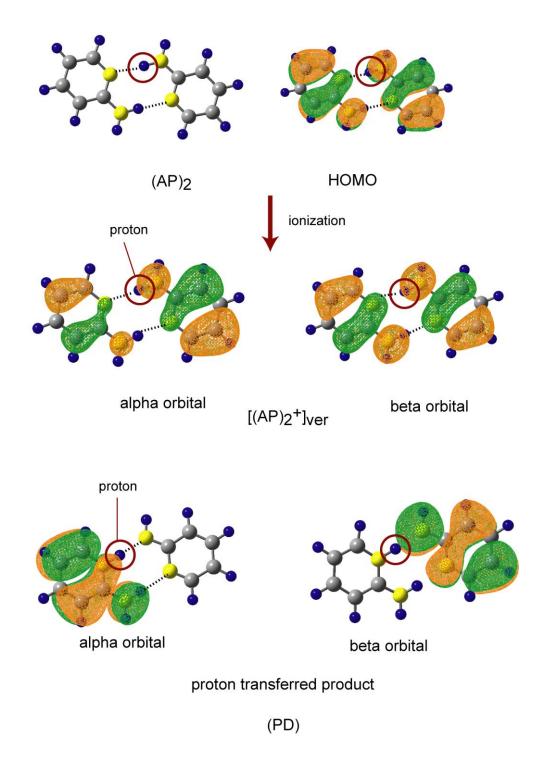


Figure S6. Illustrations of highest occupied molecular orbital, alpha- and beta- orbitals.

9. NPA atomic charges

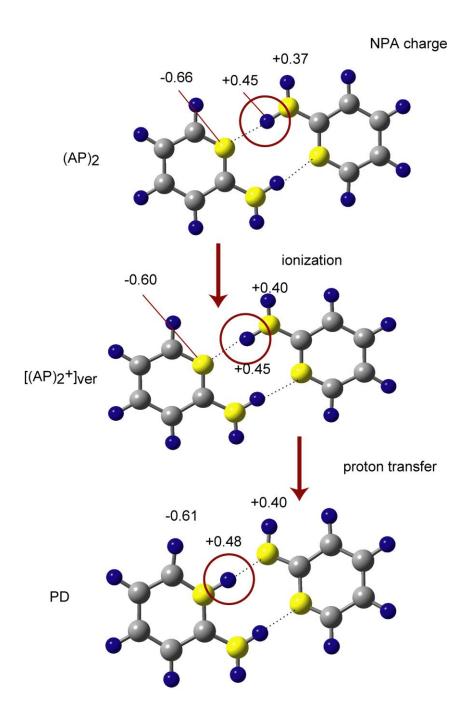


Figure S7. NPA atomic charges calculated at the MP2/6-311G(d,p) level.