# Thermodynamics of liquids: Standard molar entropies and heat capacities of common solvents from 2PT Molecular Dynamics

Tod A Pascal, Shiang-Tai Lin and William A Goddard III

# **Supplementary Materials**

# Appendix I. Description of forcefield potential functions

The molecules are represented explicitly (including hydrogen atoms) by interaction sites located on each nucleus. The potential energy is expressed as a sum of valence (or bonded) interactions and nonbonded interactions:

$$E_{total} = E_{valence} + E_{nonbond} \tag{A.I.1}$$

The valence interactions consist of diagonal terms namely, bond stretching  $(E_b)$ , bond angle bending  $(E_a)$ , dihedral angle torsion  $(E_t)$ , and inversion  $(E_v)$ :

$$E_{valence} = E_{bond} + E_{angle} + E_{torsion} + E_{inversion}$$
(A.I.2)

The nonbonded interactions consist of van der Waals  $(E_{vdw})$ , electrostatic  $(E_{Coul})$  and the case of the Dreiding forcefield, hydrogen bond  $(E_{hb})$  terms.

$$E_{nonbond} = E_{vdw} + E_{coulomb} + E_{hbond}$$
(A.I.3)

#### A.I.1. Ebond

The two-body bond stretch is a function of the bond equilibrium distance  $R_0$  and the force constant  $K_b$ , described with a harmonic function:

$$E_b = \frac{1}{2} K_b (\mathbf{R} - \mathbf{R}_0)^2$$
 (A.I.4)

## A.I.2. Eangle

Given any two bonds to a common atom, the bond angle interaction is a function of the angle  $\theta$  between them and the  $K_{\theta}$  force constant, described with a harmonic function:Dreiding should use the cosine form



$$E_a = \frac{1}{2} \operatorname{K}_{\theta}(\theta - \theta_0)^2 \tag{A.I.5}$$

## A.I.3. Etorsion

Given any two bonds IJ and KL attached to a common bond JK, the dihedral angle  $\phi$  is defined as the angle between the JKL plane and the IJK plane:



A positive angle is clockwise when looking from J toward K.  $\varphi=0^{\circ}$  for the cis configuration and  $\varphi = 180^{\circ}$  for the trans configuration. The torsional energy is summed over all available torsions, where each  $K_{\theta,n}$  is one-half the rotational barrier, n = 1,2,3...6 is the periodicity of the potential and  $d = \pm 1$  is the phase factor (d = +1 when the cis conformation is the minimum while d = -1 when the cis conformation is maximum).

#### A.I.4. Einversion

Given an atom I having exactly three distinct bonds IJ, IK, and IL (e.g. NH<sub>3</sub>), the inversion potential is used to keep all the atoms in the same plane. For Dreiding, this potential is described using an Umbrella inversion term, where  $\omega_0$  is the angle between the IL axis and the IJK plane:



| $E_n = \frac{1}{2}C[\cos(\omega) - \cos(\omega_0)] \text{ for } \omega_0 <> 0^\circ$<br>where $K_\omega = Csin^2\omega_0$ is the force | $(\mathbf{A} \mathbf{I} 7)$ |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| constant                                                                                                                               | (A.I./)                     |
| $E_n = K_{\omega}[1 - \cos(\omega)]$ otherwise                                                                                         |                             |

For the AMBER 2003/GAFF and OPLS AA/L forcefields, the inversion term is defined as if it were a torsion (improper torsion JILK) where  $K_{\psi}$  is the rotational barrier and *n* is the periodicity:



## A.I.5. E<sub>vdw</sub>

The vdW interactions between atoms *i* and *j* are represented by the analytic Lennard-Jones 12-6 (LJ12-6) potential, with interaction energy  $\varepsilon$ , equilibrium distance  $R_0$  and r being the distance between the atoms. A switching function S(r) is applied that ramps the energy and force smoothly to zero between an inner ( $r_{inner}$ ) and outer ( $r_{outer}$ ) cutoffs:

$$E_{vdw} = \begin{cases} \varepsilon \left[ \left(\frac{R_0}{r}\right)^{12} - 2\left(\frac{R_0}{r}\right)^6 \right] & r < r_{inner} \\ \varepsilon \left[ \left(\frac{R_0}{r}\right)^{12} - 2\left(\frac{R_0}{r}\right)^6 \right] \times S_{vdw} & r_{inner} < r < r_{outer} \\ 0 & r > r_{outer} \end{cases}$$

$$S_{vdw} = \frac{\left[ r_{outer}^2 - r^2 \right]^2 \left[ r_{outer}^2 + 2r^2 - 3r_{inner}^2 \right]}{\left[ r_{outer}^2 - r_{inner}^2 \right]^3}$$
(A.I.9)

vdW interactions with 1-2 and 1-3 bonded neighbors are ignored while the interactions between 1-4 bonded neighbors (atoms in a torsion) are scaled by 0.5 for the AMBER 2003/GAFF and OPLS AA/L forcefields and 1.0 for Dreiding.

#### A.I.6. E<sub>Coul</sub>

The electrostatic interactions between atoms *i* and *j* are separated into a long range contribution calculated by the PPPM<sup>1</sup> method and a real space contribution calculated from the Coulombic formula:

$$E_{coul} = \frac{q_i q_j}{\varepsilon_0 r} \tag{A.I.10}$$

where  $(1/\varepsilon_0) = 332.056$  converts units so that energy is in kcal/mol, the charge is in electron units, and *r* is the distance in Å between the atoms. Electrostatic interactions with 1-2 and 1-3 bonded neighbors are ignored while the interactions between 1-4 bonded neighbors are scaled by 0.833 for AMBER 2003/GAFF, 0.5 for OPLS AA/L and 1.0 (no scaling) for Dreiding.

#### A.I.7. E<sub>hb</sub>

The Dreiding force field has an explicit term describing atoms involved in a hydrogen bond. Here,  $R_{AD}$  is the radial distance between the donor (D) and acceptor (A) atoms and  $\theta_{AHD}$  the bond angle between the acceptor (A), the hydrogen (H) and the donor (D). The hydrogen bond is then described as:



with equilibrium distance  $R_0$  and interaction energy  $D_0$ . We have added the Dreiding hbond potential to the open source LAMMPS<sup>2</sup> MD package.

#### Appendix II. Calculation of physical properties from MD

### A.II.1. Bulk Density p

The average bulk density  $\langle \rho \rangle$  (g/cm<sup>3</sup>) is a test of the  $R_0$  of the van der Waals parameters in the forcefield and is calculated<sup>3</sup> from 5 1ns windows over the entire production dynamics from the window averaged volume  $\langle V \rangle$  according to

$$\langle \rho \rangle = \frac{512 \times M_{liquid}}{N_a \times \langle V \rangle} = \frac{512 \times M_{liquid}}{0.6023 \times \langle V \rangle}$$
 (A.II.1a)

The fluctuation in the density is then obtained from the variance:

$$\delta\langle\rho\rangle = \langle\rho\rangle \frac{\delta\langle V\rangle}{\langle V\rangle} \tag{A.II.1b}$$

#### A.II.2. Self-diffusion constant D

The self-diffusion constant D was obtained using two complementary approaches:

1. From the center of mass (COM) mean squared displacement  $r^2$  (Einstein's relation<sup>4</sup>):

$$\langle r^2 \rangle = 6Dt \tag{A.II.2a}$$

2. From the Green-Kubo VAC formulism<sup>4</sup> in linear response theory:

$$D = \frac{1}{N} \sum_{1}^{N} \int_{0}^{\infty} \langle v_{i}(t) \cdot v_{i}(0) \rangle dt \qquad (A.II.2b)$$

where t is time,  $v_i$  is the axial COM velocity of molecule *i* and the brackets denote an autocorrelation that is summed over all molecules.

Self diffusion constants are calculated by 5 additional runs of 100 ps, using the NVT ensemble, with the atomic coordinates saved every 1ps.

#### A.II.3. Static dielectric constant $\varepsilon_0$

For isotropic systems in the canonical ensemble, the frequency dependent dielectric constant is given by  $^{5, 6}$ 

$$\frac{\epsilon(\omega) - \epsilon_{\infty}}{\epsilon_0 - \epsilon_{\infty}} = 1 - i\omega \int_0^\infty e^{-i\omega t} \Phi(t) dt$$
(A.II.3a)

where

$$\Phi(t) = \frac{\left(\langle \vec{M}(t) \cdot \vec{M}(0) \rangle - \langle \vec{M} \rangle^2\right)}{\langle \Delta M \rangle^2}$$
(A.II.3b)

is the dielectric decay function and

$$\Delta M = \left( \langle M \rangle^2 - \langle \vec{M} \rangle^2 \right) \tag{A.II.3c}$$

is the total dipole moment fluctuations.

The static dielectric constant is a test of the accuracy in the atomic charges used in the forcefield and defined in linear response theory to be

$$\epsilon_0 - \epsilon_\infty = \frac{4\pi \langle \Delta M^2 \rangle}{3Vk_B T} \tag{A.II.4a}$$

Under Ewald boundary conditions, Neumann and Steinhauser<sup>6</sup> showed that the equation A.II.4a has to be modified to

$$\epsilon_0^{correct} = \frac{(Q+2)(\epsilon_0 - 1) + 3}{(Q-1)(\epsilon_0 - 1) + 3}$$
(A.II.4b)

where Q is determined from the real space Ewald cutoff  $r_c$  and the Ewald parameter  $\eta$ 

$$Q = \int_{0}^{\frac{r_{c}}{2}} 4\pi r^{2} dr \left(\frac{\eta}{\sqrt{\pi}}\right)^{3} e^{-\eta^{2}r^{2}} = erf(\eta r_{c}) - \frac{2}{\sqrt{\pi}} r_{c} e^{-\eta^{2}r^{2}}$$
(A.II.4c)

In our calculations, Q = 0.9994, leading to a negligible change in  $\varepsilon_0$ . We note that effects due to charge polarization are neglected, as none of the forcefields considered here are polarizable.

#### A.II.4. Isothermal compressibility $\kappa_T$

Under isothermal conditions, the relative volume change in response to pressure is the compressibility. This is a test of the curvature of the van der Waals parameters. From classical statistic mechanics, it is defined to be:

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T \tag{A.II.5a}$$

This quantity can be obtained during MD by the volume fluctuation formula<sup>3</sup>:

$$\kappa_T = \frac{\langle V^2 \rangle - \langle V \rangle^2}{k_B \langle T \rangle \langle V \rangle} \tag{A.II.5b}$$

#### A.II.5. Coefficient of thermal expansion $\alpha_p$

The coefficient of thermal expansion  $\alpha_p$  is a test of the balance between the electrostatic and van der Waals nonbond parameters and is defined as

$$\alpha_P = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_P \tag{A.II.6a}$$

It can be calculated from MD simulations by the enthalpy-volume fluctuation formula

$$\alpha_P = \frac{\langle VH \rangle - \langle V \rangle \langle H \rangle}{k_B \langle T \rangle^2 \langle V \rangle}$$
(A.II.6b)

# Tables

Table S1: Forcefield Parameters (forcefield types - FFtype and atomic charges) for each liquid

| Liquid                                                               | Atom #                                                                                                           | Amber                                                    | 2003/GAFF                                                                                                  | Dreidin                                        | g                                                                                                          | OPLS A                                   | A/L <sup>c</sup>                                                                  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|
| acetic acid                                                          | $     \begin{array}{c}       1 \\       2 - 4 \\       5 \\       6 \\       7 \\       8     \end{array} $      | FFtype<br>CT/c3<br>HC/hc<br>C/c<br>O/o<br>OH/oh<br>HO/ho | q(e <sup>-</sup> ) <sup>a</sup><br>-0.414320<br>0.127940<br>0.869200<br>-0.617290<br>-0.668320<br>0.456910 | FFtype<br>C_3<br>H_<br>C_R<br>O_R<br>O_2<br>HA | q(e <sup>-</sup> ) <sup>b</sup><br>-0.517430<br>0.186320<br>0.452040<br>-0.402940<br>-0.464690<br>0.374060 | FFtype<br>CT<br>HC<br>C<br>O<br>OH<br>HO | q(e <sup>-</sup> )<br>-0.180000<br>0.520000<br>-0.440000<br>-0.530000<br>0.450000 |
| 3H 70 8H                                                             |                                                                                                                  |                                                          |                                                                                                            |                                                |                                                                                                            |                                          |                                                                                   |
| acetone<br>10 H<br>7 C<br>9 H<br>8 H<br>2 H                          | $     \begin{array}{r}       1 \\       2 - 4 \\       5 \\       6 \\       7 \\       8 - 10     \end{array} $ | CT/c3<br>HC/hc<br>C/c<br>O/o<br>CT/c3<br>HC/hc           | -0.294100<br>0.077200<br>0.682500<br>-0.557800<br>-0.293800<br>0.077200                                    | C_3<br>H_<br>C_2<br>O_2<br>C_3<br>H_           | -0.479140<br>0.170510<br>0.362770<br>-0.427550<br>-0.479140<br>0.170510                                    | CT<br>HC<br>CO4<br>O<br>CT<br>HC         | -0.180000<br>0.060000<br>0.470000<br>-0.470000<br>-0.180000<br>0.060000           |
| acetonitrile<br>3H<br>5 <u>C</u><br>4H 1C 6N<br>/2H                  | $     \begin{array}{c}       1 \\       2 - 4 \\       5 \\       6     \end{array} $                            | CT/c2<br>HC/hc<br>CY/c1<br>NY/n1                         | -0.236658<br>0.114711<br>0.382240<br>-0.489715                                                             | C_3<br>H_<br>C_1<br>N_1                        | -0.530570<br>0.227860<br>0.302060<br>-0.455070                                                             | CT<br>HC<br>CZ<br>NZ                     | -0.080000<br>0.060000<br>0.460000<br>-0.560000                                    |
| benzene                                                              | 1 – 6                                                                                                            | CA/ca                                                    | -0.129400                                                                                                  | C_R                                            | -0.130430                                                                                                  | СА                                       | -0.115000                                                                         |
| 11 H<br>5 С<br>4 С<br>12 H<br>6 С<br>3 С<br>9 H<br>2 С<br>7 H<br>8 H | 7 – 12                                                                                                           | HA/ha                                                    | 0.129400                                                                                                   | Н_                                             | 0.130430                                                                                                   | НА                                       | 0.115000                                                                          |
| chloroform<br>4 Cl<br>1 C<br>2 H<br>3 Cl<br>5 Cl                     | $\frac{1}{2}$<br>3 - 5                                                                                           | CT/c3<br>H3/h3<br>Cl/cl                                  | -0.384700<br>0.265900<br>0.039600                                                                          | C_3<br>H_<br>Cl                                | -0.446920<br>0.272260<br>0.058220                                                                          | CT<br>HC<br>Cl                           | -0.333600<br>0.297600<br>0.012000                                                 |



Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011



<sup>a</sup> RESP<sup>7</sup> Charge scheme for HF/6-31G<sup>\*</sup> geometry optimization

<sup>b</sup> Mulliken<sup>8</sup> population analysis from HF/6-31G\* geometry optimization

<sup>c</sup> As determined by the Macromodel 7.0 program

|                 | Exp <sup>a</sup>   | AMBE  | R 2003 | Dreiding | GAFF   |       |        | OPLS AA/L |        |
|-----------------|--------------------|-------|--------|----------|--------|-------|--------|-----------|--------|
| acetic acid     | 12.49              |       |        | 5.6      | ± 0.10 |       |        | 11.66     | ± 0.01 |
| acetone         | 7.39               | 7.37  | ± 0.01 | 6.71     | ± 0.02 | 7.28  | ± 0.01 | 6.70      | ± 0.01 |
| acetonitrile    | 7.86               | 7.60  | ± 0.01 | 7.69     | ± 0.01 | 7.20  | ± 0.01 | 6.37      | ± 0.00 |
| benzene         | 8.09               | 6.67  | ± 0.02 | 7.13     | ± 0.02 | 6.27  | ± 0.04 | 7.13      | ± 0.02 |
| chloroform      | 7.46               | 6.02  | ± 0.01 | 6.24     | ± 0.02 | 6.29  | ± 0.01 | 6.69      | ± 0.02 |
| dioxane         | 9.23               | 10.90 | ± 0.01 | 7.98     | ± 0.01 | 10.84 | ± 0.02 | 8.27      | ± 0.02 |
| DMSO            | 11.26              | 12.29 | ± 0.03 | 11.18    | ± 0.12 | 12.11 | ± 0.02 | 13.05     | ± 0.01 |
| ethanol         | 10.11              | 10.23 | ± 0.01 | 11.50    | ± 0.03 | 11.03 | ± 0.02 | 9.87      | ± 0.01 |
| ethylene glycol | 15.27              | 19.99 | ± 0.01 | 26.86    | ± 0.04 | 20.90 | ± 0.02 | 20.72     | ± 0.04 |
| furan           | 6.56               | 6.51  | ± 0.02 | 6.22     | ± 0.01 | 6.66  | ± 0.02 | 6.46      | ± 0.03 |
| methanol        | 8.95               | 9.33  | ± 0.01 | 16.43    | ± 0.07 | 10.04 | ± 0.01 | 8.85      | ± 0.00 |
| NMA             | 13.30 <sup>b</sup> | 14.54 | ± 0.01 | 17.17    | ± 0.08 | 14.30 | ± 0.02 | 13.88     | ± 0.02 |
| THF             | 7.65               | 9.06  | ± 0.02 | 10.10    | ± 0.05 | 8.96  | ± 0.01 | 5.77      | ± 0.02 |
| toluene         | 9.08               | 7.45  | ± 0.01 | 7.83     | ± 0.03 | 7.51  | ± 0.02 | 8.21      | ± 0.01 |
| TFE             | 10.51 <sup>c</sup> | 10.87 | ± 0.04 | 11.10    | ± 0.02 | 11.81 | ± 0.02 | 12.44     | ± 0.02 |

Table S2: Comparison of calculated heat of vaporization  $\Delta H_{vap}$  (kcal/mol) for all 15 liquids and 4 forcefields -

<sup>a</sup> Reference<sup>9</sup> <sup>b</sup> Reference<sup>10</sup> <sup>c</sup> Reference<sup>11</sup>

| Table S3: Comparison of calculated coefficients of th | ermal expansion $\alpha_p$ (x10 <sup>4</sup> K <sup>-1</sup> ) for | all 15 liquids and |
|-------------------------------------------------------|--------------------------------------------------------------------|--------------------|
| 4 forcefields                                         |                                                                    | _                  |
|                                                       |                                                                    |                    |

|                 | AMBE    | R 2003  | Dreiding |         | GAFF   |         | OPLS AA/L |         |
|-----------------|---------|---------|----------|---------|--------|---------|-----------|---------|
| acetic acid     |         |         | 5 440    | + 0 880 |        |         | 7 000     | + 0.918 |
| acetone         | 15 2/1  | + 0 837 | 16 7/3   | + 3 286 | 15 332 | + 1 759 | 12 703    | + 1 303 |
| acetone         | 17 01 2 | ± 0.057 | 10.745   | ± 3.200 | 17.052 | ± 1.755 | 21 6 4 9  |         |
| acetonitrile    | 17.813  | ± 1.953 | 12.102   | ± 1.057 | 17.955 | ± 1.244 | 51.048    | ±4.758  |
| benzene         | 14.729  | ± 2.929 | 10.788   | ± 4.202 | 19.717 | ± 1.976 | 10.740    | ± 0.537 |
| chloroform      | 16.310  | ± 0.966 | 12.099   | ± 1.959 | 15.464 | ± 0.571 | 16.146    | ± 2.376 |
| 1,4 dioxane     | 10.098  | ± 1.682 | 11.572   | ± 2.771 | 10.917 | ± 1.340 | 13.565    | ± 1.025 |
| DMSO            | 12.065  | ± 0.607 | 10.066   | ± 0.733 | 9.355  | ± 1.443 | 10.751    | ± 0.801 |
| ethanol         | 15.372  | ± 1.900 | 26.081   | ± 4.856 | 17.386 | ± 2.995 | 11.898    | ± 1.911 |
| ethylene glycol | 6.332   | ± 0.468 | 3.689    | ± 1.665 | 4.650  | ± 1.753 | 9.041     | ± 1.754 |
| furan           | 12.000  | ± 1.030 | 11.511   | ± 1.135 | 10.634 | ± 0.998 | 14.011    | ± 1.077 |
| methanol        | 12.803  | ± 1.146 | 16.938   | ± 4.128 | 11.029 | ± 1.139 | 13.629    | ± 1.333 |
| NMA             | 8.515   | ± 1.028 | 11.156   | ± 1.207 | 10.229 | ± 1.154 | 9.069     | ± 0.620 |
| THF             | 13.164  | ± 2.593 | 9.399    | ± 1.003 | 11.277 | ± 2.310 | 19.680    | ± 1.379 |
| toluene         | 13.297  | ± 1.188 | 9.258    | ± 1.009 | 11.928 | ± 0.712 | 13.273    | ± 0.973 |
| TFE             | 15.698  | ± 2.074 | 12.695   | ± 2.731 | 11.602 | ± 1.570 | 17.269    | ± 1.492 |

|                 | AMBE   | R 2003  | Dreiding |         | GAFF   |         | OPLS AA/L |         |
|-----------------|--------|---------|----------|---------|--------|---------|-----------|---------|
| acetic acid     |        |         | 51.20    | ± 5.01  |        |         | 55.60     | ± 5.34  |
| acetone         | 119.00 | ± 5.54  | 186.00   | ± 22.40 | 124.00 | ± 11.20 | 130.00    | ± 8.71  |
| acetonitrile    | 133.00 | ± 6.90  | 118.00   | ± 10.40 | 144.00 | ± 11.60 | 398.00    | ± 51.00 |
| benzene         | 123.00 | ± 22.90 | 81.10    | ± 32.00 | 164.00 | ± 29.80 | 79.70     | ± 5.76  |
| chloroform      | 169.00 | ± 7.29  | 132.00   | ± 12.50 | 154.00 | ± 4.11  | 139.00    | ± 27.30 |
| 1,4 dioxane     | 47.20  | ± 6.60  | 98.00    | ± 15.70 | 61.70  | ± 7.93  | 87.30     | ± 6.67  |
| DMSO            | 58.30  | ± 1.87  | 57.60    | ± 5.38  | 52.10  | ± 5.97  | 47.20     | ± 3.12  |
| ethanol         | 121.00 | ± 4.86  | 319.00   | ± 50.40 | 146.00 | ± 20.50 | 97.40     | ± 3.98  |
| ethylene glycol | 23.40  | ± 0.87  | 53.90    | ± 13.00 | 31.70  | ± 9.22  | 44.10     | ± 4.85  |
| furan           | 106.00 | ± 10.10 | 100.00   | ± 9.02  | 81.50  | ± 5.00  | 104.00    | ± 12.00 |
| methanol        | 105.00 | ± 7.20  | 265.00   | ± 38.80 | 91.30  | ± 5.08  | 119.00    | ± 10.40 |
| NMA             | 52.50  | ± 5.17  | 104.00   | ± 13.50 | 55.80  | ± 3.76  | 58.40     | ± 2.89  |
| TFE             | 145.00 | ± 10.60 | 87.90    | ± 14.90 | 93.50  | ± 8.24  | 165.00    | ± 14.80 |
| THF             | 79.30  | ± 12.80 | 56.70    | ± 4.15  | 60.40  | ± 14.30 | 202.00    | ± 23.10 |
| toluene         | 121.00 | ± 13.20 | 80.40    | ± 4.52  | 105.00 | ± 10.30 | 110.00    | ± 8.50  |

Table S4: Comparison of calculated isothermal compressibilities  $\kappa_T$  (x10<sup>6</sup> atm<sup>-1</sup>) for all 15 liquids and 4 forcefields

Table S5:  $\Delta C_v$  (cal/mol/K) corrections to  $C_v$  to obtain  $C_p$  according to equation (1)

|                | AMBER 2003 | Dreiding | GAFF | OPLS |
|----------------|------------|----------|------|------|
| acetic acid    |            | 0.10     |      | 0.08 |
| acetone        | 0.23       | 0.19     | 0.22 | 0.14 |
| acetonitrile   | 0.20       | 0.16     | 0.20 | 0.22 |
| benzene        | 0.25       | 0.21     | 0.35 | 0.20 |
| chloroform     | 0.21       | 0.21     | 0.20 | 0.23 |
| dioxane        | 0.27       | 0.21     | 0.24 | 0.29 |
| DMSO           | 0.27       | 0.19     | 0.18 | 0.27 |
| ethanol        | 0.17       | 0.23     | 0.18 | 0.13 |
| ethlyne glycol | 0.14       | 0.02     | 0.06 | 0.16 |
| furan          | 0.13       | 0.16     | 0.15 | 0.21 |
| methanol       | 0.09       | 0.08     | 0.08 | 0.10 |
| NMA            | 0.16       | 0.16     | 0.22 | 0.16 |
| TFE            | 0.20       | 0.21     | 0.17 | 0.20 |
| THF            | 0.26       | 0.21     | 0.26 | 0.27 |
| toulene        | 0.25       | 0.19     | 0.23 | 0.26 |





Figure S1: Convergence of the self-diffusion constant D ( $x10^5$  cm<sup>2</sup>/s<sup>-1</sup>) of benzene using the OPLS AA/L forcefield, calculated with the 2PT method and the Green-Kubo VACF approach. Convergence in observed after 50ps.

# **References Cited**

1 S. J. Plimpton, R. Pollock and M. Stevens, Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN 1997.

2 S. Plimpton, J. Comput. Phys., 1995, 117, 1-19.

3 H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura and T. Head-Gordon, *The Journal of Chemical Physics*, 2004, **120**, 9665-9678.

4 M. P. Allen and D. J. Tildesley, *Computer simulation of liquids*, Clarendon Press ; Oxford University Press, Oxford [England]; New York, 1987.

5 H. Fröhlich, *Theory of dielectrics; dielectric constant and dielectric loss*, Clarendon Press, Oxford, 1958.

6 M. Neumann and O. Steinhauser, *Chem. Phys. Lett.*, 1983, **102**, 508-513.

7 T. Fox and P. A. Kollman, J. Phys. Chem. B, 1998, **102**, 8070-8079.

8 R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833-1840.

9 NIST, Chemistry WebBook, National Institute of Standards and Technology, Reference Database Number 69 edn., 2000.

10 G. Kaminski and W. L. Jorgensen, *The Journal of Physical Chemistry*, 1996, **100**, 18010-18013.

11 A. M. Mainar, J. Pardo, J. I. Garcia, F. R. Royo and J. S. Urieta, *Journal of the Chemical Society-Faraday Transactions*, 1998, **94**, 3595-3599.