Supplementary information of

Shape Resonance States of the Low-Energy Electron Attachments to DNA Base Tautomers

Yong-Feng Wang and Shan Xi Tian*

Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

TABLE S1. The relative energies of DNA base tautomers. (kcal/mol).

				=	
		7H-adenine	9H-adenine	method	
		7.63	0.00	RI-MP2/TZVPP//RI-MP2/TZVPP ^a	
		7.79	0.00	MP2/aug-cc-pVDZ//RI-MP2/TZVPP ^a	
		7.67	0.00	MP2/cc-pVDZ//MP2/cc-pVDZ ^b	
cis-9H-enol-	trans-9H-enol-	7H-keto-guanine	9H-keto-guanine		
guanine	guanine				
0.29	0.09	-0.50	0.00	RI-MP2/TZVPP//RI-MP2/TZVPP ^c	
0.58	0.30	-0.71	0.00	MP2/aug-cc-pVDZ//RI-MP2/TZVPP ^c	
1.31(Tian)	0.65(Tian)	-0.59(Tian)	0.00	CCSD(T)/aug-cc-pVDZ//RI-MP2/TZVPP ^c	
0.62(Hanus)	0.22(Hanus)	-0.69(Hanus)			
1.67	0.96	0.24	0.00	MP2/6-311G(d, p)//MP2/6-311G(d, p) ^d	
1.35	0.84	0.24	0.00	MP2/cc-pVDZ//MP2/cc-pVDZ ^b	
Cytosine, 3	Cytosine, 1	Cytosine,2b	Cytosine,2a		
3.21	1.90	0.72	0.00	RI-MP2/TZVPP//RI-MP2/TZVPP ^e	
2.96	1.60	0.69	0.00	MP2/aug-cc-pVDZ//RI-MP2/TZVPP ^e	
1.70	1.22	0.66	0.00	CCSD(T)/aug-cc-pVDZ//RI-MP2/TZVPP ^e	
2.96	2.57	0.67	0.00	MP2/cc-pVDZ//MP2/cc-Pvdz ^e	
3.07	2.54	0.67	0.00	MP2/cc-pVDZ//MP2/cc-pVDZ ^b	

^{*a*}From ref. 38.

^bThis work.

^cFrom ref. 39.

^{*d*}From ref. 16.

^eFrom ref. 40.

	$a_{xx}(a.u.)^a$	$a_{yy}(a.u.)^a$	$a_{zz}(a.u.)^a$	$a_{xy}(a.u.)^a$	$a_{xz}(a.u.)^a$	$a_{yz}(a.u.)^a$	$IP_v(eV)^b$
9H-adenine	113.171	94.442	34.332	1.099	0.294	-0.229	8.34
7H-adenine	109.489	96.166	35.168	4.227	-0.058	-0.659	8.70
9H-keto-guanine	124.946	95.766	36.428	4.507	0.876	0.132	7.98
7H-keto-guanine	123.597	94.730	36.539	2.335	0.967	0.249	8.11
trans-9H-enol-guanine	128.761	94.520	35.969	4.023	0.587	-0.254	8.02
cis-9H-enol-guanine	128.902	92.321	35.868	1.293	0.526	-0.250	8.06
thymine	85.499	90.262	35.053	-11.764	0.000	0.000	8.97
cytosine, 2a	89.599	71.298	27.623	-1.820	0.440	-0.112	8.78
cytosine, 2b	85.107	75.245	27.642	-0.233	0.458	-0.147	8.76
cytosine, 1	92.729	70.205	27.568	-0.222	0.409	-0.038	8.61
cytosine, 3	93.727	69.771	27.077	6.170	0.000	0.000	8.65

TABLE S2. The polarizability and vertical ionization potential (IP_v) of the DNA base tautomers used in our calculations.

^aThe polarizability of the DNA base tautomers was calculated using B3LYP method with cc-pVDZ bases set.

^bThe IP_v of the DNA base tautomers was calculated using P3 method (J. V. Ortiz, *J. Chem. Phys.* 1996, **104**, 7599) with cc-pVDZ bases set.

Figure S1. Wave function plots of four π^* resonance states (a: π_1^* , b: π_2^* , c: π_3^* , d: π_4^*) for 9H-adenine.

Figure S2. Wave function plots of four π^* resonance states (a: π_1^* , b: π_2^* , c: π_3^* , d: π_4^*) for 7H-adenine.

Figure S3. Wave function plots of four π^* resonance states (a: π_1^* , b: π_2^* , c: π_3^* , d: π_4^*) for 9H-keto-guanine.

Figure S4. Wave function plots of four π^* resonance states (a: π_1^* , b: π_2^* , c: π_3^* , d: π_4^*) for 7H-keto-guanine.

Figure S5. Wave function plots of four π^* resonance states (a: π_1^* , b: π_2^* , c: π_3^* , d: π_4^*) for trans-9H-enol-guanine.

Figure S6. Wave function plots of four π^* resonance states (a: π_1^* , b: π_2^* , c: π_3^* , d: π_4^*) for cis-9H-enol-guanine.

Figure S7. Wave function plots of three π^* resonance states (a: π_1^* , b: π_2^* , c: π_3^*) for thymine

Figure S8. Wave function plots of three π^* resonance states for tautomers 2a (a: π_1^* , b: π_2^* , c: π_3^*) and 2b (d: π_1^* , e: π_2^* , f: π_3^*) of cytosine.

Figure S9. Wave function plots of three π^* resonance states for tautomers 1 (a: π_1^* , b: π_2^* , c: π_3^*) and 3 (d: π_1^* , e: π_2^* , f: π_3^*) of cytosine.