Relativistic DFT calculations of the NMR properties and reactivity of transition metal methane σ -complexes: insights on C-H bond activation

Alessandro Bagno,^a Giacomo Saielli^b*

Dipartimento di Scienze Chimiche Università di Padova e ITM-CNR, Unità di Padova Via Marzolo, 1 – 35131, Padova Italy

Supporting Information

Cartesian coordinates of the small model systems	p. S2
Table S1: Calculated shielding of the small model systems	p. S3
Cartesian coordinates of the optimized structures	p. S4
Complete Tables of calculated NMR properties	p. S15
Figure : structure of CH ₅ ⁺	p. S32

 $L'Ir(H)CH_3^+$ Model system, where L' is the PONOP ligand with *t*-Bu groups replaced by methyl groups.

Ir	-0.068644	-4.099964	-1.664417
Р	-0.058453	-2.945100	-3.698069
Р	-0.080916	-4.501518	0.639527
Ν	-0.046452	-2.070794	-0.936194
0	-0.038048	-1.311817	-3.138283
0	-0.060754	-2.885003	1.246045
С	-0.009736	0.537765	0.000000
С	-0.013016	0.298655	-1.376955
С	-0.031229	-1.029295	-1.808835
С	-0.042666	-1.821734	0.399623
С	-0.024863	-0.522210	0.910721
С	-0.229743	-6.095203	-2.381184
С	1.498186	-2.921167	-4.814521
С	1.465326	-5.197974	1.530733
С	-1.727816	-2.932266	-4.643259
С	-1.758915	-5.087037	1.361891
Η	1.652725	-6.195744	1.162308
Η	-1.913452	-2.024401	-5.197984
Η	-1.952621	-4.738345	2.365530
Η	2.322359	-2.605744	-4.191907
Η	-1.810155	-6.164956	1.318725
Η	-2.503994	-4.668452	0.701555
Η	2.294134	-4.561383	1.258282
Η	1.370534	-5.207854	2.606520
Η	-1.775900	-3.791559	-5.295718
Η	-2.480297	-3.026539	-3.874309
Η	1.413303	-2.244531	-5.651992
Η	1.685481	-3.926169	-5.162791
Η	0.203506	-6.844292	-1.710518
Η	-0.001288	1.101962	-2.105110
Η	-0.022462	-0.365134	1.983555
Η	0.004298	1.560065	0.366895
Η	-1.306091	-6.327624	-2.470155
Η	0.212105	-6.248445	-3.371092
Η	1.471587	-4.170018	-1.681577

 $L'RhCH_4^+$ Model system , where L' is the PONOP ligand with *t*-Bu groups replaced by methyl groups.

Rh	0.581491	3.914198	-1.755854
Р	0.379190	2.770132	-3.777934
Р	0.596572	4.426680	0.519174
0	0.187086	1.170547	-3.185831
0	0.407479	2.850042	1.170800
Ν	0.308567	2.030213	-1.015765
С	-0.045959	-0.558173	0.000000
С	-0.017554	-0.349029	-1.379033
С	0.159193	0.952369	-1.851056
С	0.269789	1.795165	0.335168
С	0.096435	0.519627	0.874273
С	1.115660	6.175676	-2.654683
С	-1.269018	2.965527	-4.746793
С	-0.965776	5.276370	1.247565
С	1.933752	2.484859	-4.872532
С	2.250091	4.895507	1.380722
Н	-0.996127	5.302769	2.326815
Н	1.883556	1.593592	-5.480417
Η	-2.052598	2.810722	-4.019856
Η	2.283742	4.643196	2.430297
Н	2.437631	5.949955	1.241551
Н	3.008667	4.324646	0.865864
Н	-1.804518	4.701212	0.884101
Η	-1.029319	6.277265	0.846851
Н	2.096964	3.353912	-5.492619
Η	2.753548	2.380519	-4.177228
Η	-1.330972	3.978531	-5.116095
Η	-1.394983	2.263302	-5.557602
Η	-0.128423	-1.157787	-2.092605
Η	0.076177	0.401362	1.951847
Η	-0.181174	-1.561270	0.393537
Η	1.128053	7.075778	-2.036616
Η	2.036898	5.598343	-2.478723
Η	1.043180	6.429002	-3.714360
Η	0.137911	5.639469	-2.398511

L'Ir(H)CH₃+

Table S1 Calculated^a chemical shifts (ppm) of the CH_4 moiety in $L'Ir(H)CH_3^+$ and $L'RhCH_4^+$ model systems

		Exp ^a	ZSO-	ZSO-
		-	KT2/TZ2P	PBE0/TZ2P
	С	-20.6	-2.09	-11.67
	H H	-41.82	-31.61	-38.99
L'Ir(H)CH ₃	H_3	1.92	2.41	1.84
	H_4	-8.95 ^b	-6.10	-8.37
LRhCH4 ⁺	С	-41.7	-43.24	-47.7
	H_4	-0.86	-1.35	-1.95

H, H₃ and H₄ refer to the hydride hydrogen, the average value of the three methyl hydrogens

and the average value of the four hydrogens, respectively. ^aFrom Ref. 1. ^bRoom temperature average.

TMS ZSO-PBE0/TZ2P//BLYP/TZ2P Shielding Constants

C(2): 190.13 ppm H(6): 31.35 ppm

E=	-13.731048	a.u.: negativ	e frequencies: none
Ir	-0.009736	0.537765	0.000000
Р	-0.015224	0.137634	-2.304218
Р	-0.015224	0.137634	2.304218
Ν	-0.067098	-1.617471	0.000000
0	-0.063670	-1.588178	2 329043
Õ	-0.063670	-1.588178	-2.329043
Č	-0.087786	-2 302804	-1 173177
Ċ	-0.087786	-2 302804	1 173177
Ċ	-0 128564	-3 698106	-1 215259
Č	-0.128564	-3.698106	1.215259
Ĉ	-0.149025	-4.387972	0.000000
Ĉ	1.663265	0.417433	3.190056
Ċ	-1.560692	0.517439	3.370726
Ċ	1.663265	0.417433	-3.190056
Ċ	-1.560692	0.517439	-3.370726
Ċ	0.185933	2.654933	0.000000
С	-1.440134	0.007597	-4.828545
С	1.758719	1.894509	-3.655021
С	2.737453	0.153656	-2.096621
С	1.919665	-0.543794	-4.377414
С	-2.761502	-0.192715	2.686671
С	-1.440134	0.007597	4.828545
С	-1.805123	2.051119	3.355329
С	1.758719	1.894509	3.655021
С	2.737453	0.153656	2.096621
С	1.919665	-0.543794	4.377414
С	-1.805123	2.051119	-3.355329
С	-2.761502	-0.192715	-2.686671
Η	-0.243755	3.140573	0.882130
Η	-0.143951	-4.208104	-2.171981
Η	-0.143951	-4.208104	2.171981
Η	-0.180778	-5.473743	0.000000
Η	1.266210	2.886152	0.000000
Η	-0.243755	3.140573	-0.882130
Η	-1.548610	0.634617	0.000000
Η	-2.728637	2.259116	-3.911821
Η	-1.935795	2.434971	-2.337748
Η	-0.999114	2.613029	-3.837154
Η	-2.658668	-1.282357	-2.701679
Η	-2.900155	0.133475	-1.650170
Η	-3.673216	0.065837	-3.240499
Н	-2.408099	0.154936	-5.326200
Н	-0.692905	0.563496	-5.402926
Н	-1.202328	-1.060590	-4.875917
H	2./84914	2.088621	-3.994946
H	1.091312	2.105179	-4.496588
H	1.539680	2.603403	-2.847381
H	2.635906	0.842952	-1.248635
H	2.704382	-0.8/6/95	-1./24946
Н	3./33/96	0.315521	-2.528630

LIr(H)CH ₃ ⁺	optimized	geometry	ZSC-BLYP/	TZ2P
	• p	8		

Η	1.246341	-0.364434	-5.218917
Η	2.945432	-0.380048	-4.735620
Η	1.833417	-1.593909	-4.080391
Η	-2.900155	0.133475	1.650170
Η	-2.658668	-1.282357	2.701679
Η	-3.673216	0.065837	3.240499
Н	-0.692905	0.563496	5.402926
Η	-2.408099	0.154936	5.326200
Н	-1.202328	-1.060590	4.875917
Н	-1.935795	2.434971	2.337748
Н	-2.728637	2.259116	3.911821
Н	-0.999114	2.613029	3.837154
Η	1.091312	2.105179	4.496588
Η	2.784914	2.088621	3.994946
Н	1.539680	2.603403	2.847381
Η	2.704382	-0.876795	1.724946
Н	2.635906	0.842952	1.248635
Н	3.733796	0.315521	2.528630
Н	2.945432	-0.380048	4.735620
Η	1.246341	-0.364434	5.218917
Н	1.833417	-1.593909	4.080391

LIr	CH ⁺ ontimi	zed geometr	v ZSC-BLYP/TZ2P
En	-13 722816	a II. · negative	e frequencies: none
Ir	-0.016568	0 485784	0.000000
р	0.009634	0.149501	2 298229
л р	0.009634	0.149501	_2 298229
I N	-0.035778	-1 5/2020	0.00000
$\hat{0}$	-0.023828	-1.567402	-2 341216
$\hat{0}$	-0.023828	-1.567402	2.341216
C	0.023828	2 255530	1 176877
C	-0.037853	2.255555	1.176877
C	-0.057855	-2.255559	1 208604
C	-0.053996	-3 6/0331	-1 208604
C	-0.055770	1 3/630/	0.00000
C	-0.004039	0 407218	2 2 2 7 4 7 4
C	-1.570014	0.497318	-3.32/4/4
C	1.032199	0.4/9120	-3.234430
C	-1.570014	0.49/318	3.32/4/4
C	0.210206	0.479120	5.254450
C	-0.210200	2.933344	0.000000
C	2.730433	-0.237035	2.424095
C	1.0001//	-0.034334	4.095109
C	1.943007	2.004344	5.2041/1 2.204171
C	1.943007	2.004344	-3.2041/1
C	2./30433	-0.237033	-2.424893
C	1.0001//	-0.034334	-4.093109
C	-1.022427	1.998030	-3.713320
C	-2.700095	0.1/1/08	-2.381200
C	-1.703303	-0.380231	-4.393001
C	-1.022427	1.998030	5./15520 2.291266
C	-2.700093	0.1/1/08	2.381200 1 505881
ц	-1.703303	-0.380231	4.595881
н Ц	-0.027380	J.J4J798 A 15122A	-0.900370
н	-0.057070	-4.151224	-2 169768
н	-0.078746	-5 432204	0.00000
Н	-1 241408	2 587052	0.000000
н	-0.027386	3 5/3708	0.000000
Н	0.665472	2 176112	0.00000
Н	2 641779	-1 345445	2 473460
Н	2.760157	0.047430	1 372612
Н	3 732123	-0.004542	2.860004
Н	2 691397	0.048951	5 080742
Н	1 023571	0.560287	5 351512
Н	1 370244	-1 086773	4 767625
Н	1.200052	2.590454	3.752058
Н	2.917252	2.180123	3.683301
Н	2.011022	2.388031	2.179442
Н	2.011022	2.388031	-2.179442
Н	2.917252	2.180123	-3.683301
Н	1.200052	2.590454	-3.752058
Н	2.760157	0.047430	-1.372612
Н	2.641779	-1.345445	-2.473460

		0 00 4 - 10	• • • • • • • •
Н	3.732123	-0.004542	-2.860004
Η	1.023571	0.560287	-5.351512
Η	2.691397	0.048951	-5.080742
Η	1.370244	-1.086773	-4.767625
Η	-0.861617	2.259041	-4.458587
Η	-2.602513	2.215444	-4.160710
Η	-1.505747	2.660328	-2.848117
Η	-2.780641	-0.885492	-2.093496
Η	-2.744744	0.774000	-1.467066
Η	-3.703507	0.383554	-2.913333
Η	-2.698515	-0.216459	-5.029485
Η	-0.965654	-0.137550	-5.361927
Η	-1.620817	-1.452628	-4.362705
Η	-2.602513	2.215444	4.160710
Η	-0.861617	2.259041	4.458587
Η	-1.505747	2.660328	2.848117
Η	-2.744744	0.774000	1.467066
Η	-2.780641	-0.885492	2.093496
Η	-3.703507	0.383554	2.913333
Η	-0.965654	-0.137550	5.361927
Η	-2.698515	-0.216459	5.029485
Н	-1.620817	-1.452628	4.362705

 $\Delta E(\mathbf{LIr}(\mathbf{H})\mathbf{CH}_{3}^{+} - \mathbf{LIr}\mathbf{CH}_{4}^{+}) = -5.2 \text{ kcal/mol}$ $\Delta G(\mathbf{LIr}(\mathbf{H})\mathbf{CH}_{3}^{+} - \mathbf{LIr}\mathbf{CH}_{4}^{+}) = -7.8 \text{ kcal/mol}$

LRh(H)CH ₃ ⁺ optimized geometry ZSC-
BLYP/TZ2P
E= _13 668006 a u · negative frequencie

none

E=	-13.668906	a.u.; negative	e frequencies:
Rh	-0.004013	-0.647629	0.000000
Р	0.035726	-0.247344	-2.312980
Р	0.035726	-0.247344	2.312980
0	-0.007575	1.478673	2.327805
0	-0.007575	1.478673	-2.327805
Ν	-0.020922	1.507574	0.000000
С	-0.015656	2.193449	-1.171482
Ċ	-0.015656	2.193449	1.171482
Ċ	-0 019793	3 590094	-1 215711
Ċ	-0 019793	3 590094	1 215711
Ċ	-0.023543	4 279380	0.000000
C	-1 613214	-0 598744	3 230068
C	1.627833	-0 535292	3 340029
C	-1 613214	-0 598744	-3 230068
C	1 627833	-0.576744	-3.340029
C	-0 106808	-2 760333	0.000000
C	-0.100808	-2.700333	2.610064
C	2.700902	0.220700	-2.010004
C	1.94/00/	-2.0331/1	-3.320437
C	1.524885	-0.016277	-4./95/49
C	-1.659680	-2.095829	-3.634986
C	-2./14612	-0.319098	-2.16/26/
C	-1.866444	0.308/44	-4.459559
C	1.524885	-0.016277	4.795749
C	1.947/007	-2.055171	3.326457
С	-1.659680	-2.095829	3.634986
С	-2.714612	-0.319098	2.167267
С	-1.866444	0.308744	4.459559
С	2.766962	0.228780	2.610064
Η	-0.017483	4.101350	-2.171913
Η	-0.017483	4.101350	2.171913
Η	-0.026174	5.365765	0.000000
Η	0.339757	-3.223770	0.887206
Η	-1.188763	-2.987912	0.000000
Η	0.339757	-3.223770	-0.887206
Η	1.509104	-0.827199	0.000000
Η	2.901013	-2.214264	-3.846502
Η	2.055655	-2.441622	-2.307003
Η	1.188198	-2.650247	-3.845087
Η	2.612453	1.312440	-2.627888
Н	2.879811	-0.093123	-1.568751
Н	3.710893	0.016288	-3.128553
Н	2.515881	-0.095692	-5.263067
Н	0.832308	-0.609866	-5.400113
Н	1 222200	1 035762	-4 838954
Н	-2.669144	-2.329823	-3.999378
Н	-0.959502	-2 325697	-4 444832
Н	-1.450842	-2.764402	-2.790786
Н	-2.605314	-0.962405	-1.284367

Η	-2.721010	0.728478	-1.845536
Н	-3.697703	-0.534172	-2.606287
Н	-1.190748	0.089541	-5.289983
Н	-2.891400	0.129603	-4.813452
Н	-1.781076	1.371595	-4.210466
Η	2.879811	-0.093123	1.568751
Η	2.612453	1.312440	2.627888
Η	3.710893	0.016288	3.128553
Η	0.832308	-0.609866	5.400113
Η	2.515881	-0.095692	5.263067
Η	1.222200	1.035762	4.838954
Η	2.055655	-2.441622	2.307003
Н	2.901013	-2.214264	3.846502
Н	1.188198	-2.650247	3.845087
Н	-0.959502	-2.325697	4.444832
Н	-2.669144	-2.329823	3.999378
Н	-1.450842	-2.764402	2.790786
Η	-2.721010	0.728478	1.845536
Н	-2.605314	-0.962405	1.284367
Н	-3.697703	-0.534172	2.606287
Н	-2.891400	0.129603	4.813452
Η	-1.190748	0.089541	5.289983
Η	-1.781076	1.371595	4.210466

LRhCH ₄ ⁺ optimized geometry ZSC-BLYP/TZ2P			
E = -1	3.680964 a.	u.; negative	frequencies: none
Rh	-0.045959	-0.558173	0.000000
Р	0.001523	-0.208561	-2.305241
Р	0.001523	-0.208561	2.305241
0	-0.036975	1.507149	2.337173
0	-0.036975	1.507149	-2.337173
Ν	-0.045295	1.484281	0.000000
С	-0.046073	2.195789	-1.172829
С	-0.046073	2.195789	1.172829
Ċ	-0.057103	3.590875	-1.208816
Ċ	-0.057103	3.590875	1.208816
Č	-0.064613	4 287286	0 000000
Č	-1 572918	-0 549269	3 354642
C	1 665052	-0 520163	3 215753
C	-1 572918	-0 549269	-3 354642
C	1.665052	-0 520163	-3 215753
C	-0.251195	-3 041193	0.000000
C	2 745649	0 214983	2 373652
C	1 961438	-2 044370	3 191523
C	1.961/38	-2.044370	-3 101523
C	1.706656	0.011270	-5.171525 A 660110
C	2 745640	0.011277	2 373652
C	2.745049	0.214983	4 660110
C	1.700030	0.011279	4.009110
C	-1.024049	-2.034312	2 410700
C	-2./0/311	-0.203203	2.419/00
C	-1.078340	0.324231	4.030672
C	-1.024049	-2.034312	-3./23138
C	-2./0/311	-0.205203	-2.419/00
	-1.0/8540	0.324231	-4.0308/2
П	-0.058507	4.093134	-2.109/00
H	-0.058507	4.093134	2.169/00
H	-0.0/4254	5.3/3226	0.000000
H	-0.1389/6	-3.649193	0.900048
H	-1.245545	-2.56/6/2	0.000000
H	-0.1389/6	-3.649193	-0.900048
H	0.639821	-2.323402	0.000000
H	2.624669	1.302/43	-2.411559
H	2.730980	-0.101379	-1.324099
Н	3.733742	-0.024831	-2.788122
Н	2.739821	-0.062178	-5.036368
Н	1.079569	-0.577034	-5.346261
Н	1.407546	1.063398	-4.734291
Н	1.237549	-2.626100	-3.771933
H	2.950839	-2.215156	-3.636682
Н	1.990506	-2.440496	-2.169428
Η	1.990506	-2.440496	2.169428
Н	2.950839	-2.215156	3.636682
Н	1.237549	-2.626100	3.771933
Н	2.730980	-0.101379	1.324099
Н	2.624669	1.302743	2.411559

Н	3.733742	-0.024831	2.788122
Н	1.079569	-0.577034	5.346261
Н	2.739821	-0.062178	5.036368
Н	1.407546	1.063398	4.734291
Н	-0.855666	-2.329592	4.454814
Н	-2.600142	-2.272659	4.180271
Н	-1.523187	-2.705969	2.847757
Η	-2.778737	0.855843	2.145785
Η	-2.755065	-0.796292	1.497116
Η	-3.703610	-0.419615	2.951908
Н	-2.671933	0.165665	5.073248
Н	-0.936870	0.059049	5.388113
Η	-1.583061	1.391682	4.406199
Η	-2.600142	-2.272659	-4.180271
Η	-0.855666	-2.329592	-4.454814
Η	-1.523187	-2.705969	-2.847757
Η	-2.755065	-0.796292	-1.497116
Η	-2.778737	0.855843	-2.145785
Η	-3.703610	-0.419615	-2.951908
Η	-0.936870	0.059049	-5.388113
Η	-2.671933	0.165665	-5.073248
Н	-1.583061	1.391682	-4.406199

 $\Delta E(\mathbf{LRh(H)CH_3^+} - \mathbf{LRhCH_4^+}) = +7.6 \text{ kcal/mol} \\ \Delta G(\mathbf{LRh(H)CH_3^+} - \mathbf{LRhCH_4^+}) = +4.8 \text{ kcal/mol}$

none

Lh	·CH 3 optimiz	ed geometry	ZSC-BLYP/TZ2P
E=	-13.7760787	2 a.u.; negat	ive frequencies: nor
Ir	-0.603926	-0.034409	0.000000
Р	-0.230622	-0.001660	2.243344
Р	-0.230622	-0.001660	-2.243344
0	1.504688	-0.083021	-2.330925
0	1.504688	-0.083021	2.330925
Ν	1.504840	-0.074589	0.000000
С	2.210982	-0.106222	1.169913
С	2.210982	-0.106222	-1.169913
С	3.605526	-0.164057	1.210499
С	3.605526	-0.164057	-1.210499
С	4.305840	-0.193222	0.000000
С	-0.614172	-1.557853	-3.323861
С	-0.482067	1.652612	-3.212666
С	-0.614172	-1.557853	3.323861
С	-0.482067	1.652612	3.212666
С	-2.742067	-0.114717	0.000000
С	0.267078	2.731000	-2.381345
С	-1.994730	2.000502	-3.215621
С	-1.994730	2.000502	3.215621
Ċ	0.067427	1.664648	4.659012
Ċ	0.267078	2.731000	2.381345
Ċ	0.067427	1.664648	-4.659012
Ċ	-2.119772	-1.552947	-3.697173
Č	-0.328961	-2.770328	-2.393131
С	0.254528	-1.709147	-4.597791
Č	-2.119772	-1.552947	3.697173
С	-0.328961	-2.770328	2.393131
Ċ	0.254528	-1.709147	4.597791
Н	4.108016	-0.186498	2.171605
Н	4.108016	-0.186498	-2.171605
Н	5.391131	-0.239649	0.000000
Н	-3.213874	0.344411	-0.879851
Н	-3.050750	-1.175895	0.000000
Н	-3.213874	0.344411	0.879851
Н	1.352029	2.580893	2.403953
Н	-0.061013	2.723603	1.335896
Н	0.053037	3.720222	2.811132
Н	0.031729	2.695480	5.042287
Н	-0.532610	1.047551	5.336132
Н	1.109408	1.328300	4.707080
Н	-2.587799	1.294631	3.807212
Н	-2.127376	2.997441	3.660989
Η	-2.402705	2.026296	2.199322
Н	-2.402705	2.026296	-2.199322
Η	-2.127376	2.997441	-3.660989
Н	-2.587799	1.294631	-3.807212
Н	-0.061013	2.723603	-1.335896
Н	1.352029	2.580893	-2.403953
Н	0.053037	3.720222	-2.811132
Н	-0.532610	1 047551	-5 336132

Η	0.031729	2.695480	-5.042287
Н	1.109408	1.328300	-4.707080
Η	-2.357637	-0.784983	-4.441914
Н	-2.383105	-2.526855	-4.134942
Н	-2.759781	-1.398170	-2.820001
Н	0.730900	-2.827776	-2.119603
Н	-0.912350	-2.715661	-1.468453
Η	-0.590675	-3.696097	-2.926347
Н	0.060849	-2.699016	-5.037576
Η	0.021607	-0.961485	-5.360656
Н	1.323949	-1.649568	-4.368333
Η	-2.383105	-2.526855	4.134942
Η	-2.357637	-0.784983	4.441914
Η	-2.759781	-1.398170	2.820001
Η	-0.912350	-2.715661	1.468453
Η	0.730900	-2.827776	2.119603
Н	-0.590675	-3.696097	2.926347
Н	0.021607	-0.961485	5.360656
Η	0.060849	-2.699016	5.037576
Н	1.323949	-1.649568	4.368333

LRhCH ₃ optimized geometry ZSC-BLYP/TZ2P			
E=	-13.7212470	2 a.u.; negati	ive frequencies: none
Rh	-0.614561	-0.041501	0.000000
Р	-0.248229	0.004180	2.251718
Р	-0.248229	0.004180	-2.251718
Ο	1.493177	-0.083782	-2.327609
0	1.493177	-0.083782	2.327609
Ν	1.497560	-0.078321	0.000000
С	2.198579	-0.108815	1.168215
С	2.198579	-0.108815	-1.168215
С	3.594996	-0.168153	1.211522
С	3.594996	-0.168153	-1.211522
Ċ	4.292486	-0.198463	0.00000
Ċ	-0.611618	-1.545188	-3.351332
Č	-0 469504	1 670066	-3 213887
Č	-0.611618	-1 545188	3 351332
C	-0 469504	1 670066	3 213887
C	-2 752584	-0 142698	0.000000
C	0 263640	2 733509	-2 349307
C	-1 981731	2.755505	-3 242766
C	-1 981731	2.010920	3 242766
C	0 113804	1 702120	1 6/6387
C	0.263640	2 733500	2 3/0307
C	0.113804	1 702120	2.547507 1.616387
C	2 121825	1.702120	3 705726
C	-0.299381	-1.557977	-2 430477
C	0.275846	-1 674539	-1 63/603
C	-2 121835	-1.557997	3 705726
C	_0 299381	-2 758974	2 430477
C	0.2255301	-1 674539	4 634603
н	4 099308	-0 190549	2 171597
н	4 099308	-0 190549	-2 171597
н	5 377947	-0.246523	0.000000
н	-3 222613	0.312059	-0 884528
н	-3 028236	-1 213433	0.000000
н	-3 222613	0.312059	0.884528
н	1 348837	2 582729	2 353145
н	-0.084295	2 710902	1 309828
н	0.059608	3 730864	2 764919
н	0.093880	2 738862	5 015302
н	-0 472738	1 098571	5 347152
н	1 154735	1 359810	4 674257
н	-2 560182	1 326715	3 864714
н	-2 106544	3 026326	3 666401
н	-2 413308	2 019634	2 235556
н	-2 413308	2.019634	-2 235556
Н	-2 106544	3 026326	-3 666401
Н	-2.560182	1 326715	-3 864714
Н	-0.084295	2,710902	-1 309828
Н	1 348837	2.582729	-2 353145
Н	0.059608	3.730864	-2.764919
Η	-0.472738	1.098571	-5.347152

Η	0.093880	2.738862	-5.015302
Н	1.154735	1.359810	-4.674257
Η	-2.380148	-0.784454	-4.438086
Η	-2.378184	-2.530355	-4.151273
Η	-2.752300	-1.421712	-2.818391
Н	0.766218	-2.809506	-2.178019
Н	-0.866828	-2.714098	-1.494422
Η	-0.563909	-3.685794	-2.960318
Η	0.070001	-2.667020	-5.076438
Η	-0.012103	-0.929554	-5.392376
Η	1.316417	-1.591991	-4.416784
Η	-2.378184	-2.530355	4.151273
Η	-2.380148	-0.784454	4.438086
Η	-2.752300	-1.421712	2.818391
Η	-0.866828	-2.714098	1.494422
Η	0.766218	-2.809506	2.178019
Η	-0.563909	-3.685794	2.960318
Η	-0.012103	-0.929554	5.392376
Н	0.070001	-2.667020	5.076438
Н	1.316417	-1.591991	4.416784

LIr+ optimized geometry ZSC-BLYP/TZ2P			
E=	-12.8504764	4 a.u.; negat	ive frequencies: none
С	0.005084	0.452683	0.000000
С	0.052884	-0.242683	1.208197
С	0.151488	-1.632437	1.185385
Ν	0.206542	-2.341130	0.000000
С	0.151488	-1.632437	-1.185385
С	0.052884	-0.242683	-1.208197
Ir	0.348527	-4.308811	0.000000
Р	0.314803	-4.030848	-2.298103
С	-1.284170	-4.551920	-3.211689
С	-1.333458	-4.172048	-4.710657
0	0.197114	-2.315393	2.350550
Р	0.314803	-4.030848	2.298103
С	-1.284170	-4.551920	3.211689
С	-1.431815	-6.089681	3.037628
0	0.197114	-2.315393	-2.350550
С	1.929832	-4.267979	3.301213
С	1.983838	-3.429762	4.603880
С	1.929832	-4.267979	-3.301213
С	1.983838	-3.429762	-4.603880
С	2.104841	-5.777261	-3.615500
С	3.076923	-3.802509	-2.360614
С	-1.431815	-6.089681	-3.037628
С	-2.450956	-3.848103	-2.464297
C	2.104841	-5.777261	3.615500
С	3.076923	-3.802509	2.360614
C	-2.450956	-3.848103	2.464297
С	-1.333458	-4.172048	4.710657
Н	0.015321	0.257115	2.169787
Н	0.015321	0.257115	-2.169787
Н	-0.071188	1.535626	0.000000
Н	-2.429564	-2.762148	2.603026
Н	-2.434314	-4.066195	1.390467
Н	-3.399086	-4.219607	2.874451
Н	-2.338859	-4.395872	5.092615
Н	-0.623089	-4.749095	5.310655
Н	-1.149160	-3.104303	4.873741
Н	-0.647859	-6.652200	3.554798
Н	-2.395484	-6.398895	3.463965
Н	-1.431881	-6.381131	1.978933
Н	-1.431881	-6.381131	-1.978933
Н	-2.395484	-6.398895	-3.463965
Н	-0.647859	-6.652200	-3.554798
Н	-2.434314	-4.066195	-1.390467
Н	-2.429564	-2.762148	-2.603026
Н	-3.399086	-4.219607	-2.874451
Н	-0.623089	-4.749095	-5.310655
Н	-2.338859	-4.395872	-5.092615
Н	-1.149160	-3.104303	-4.873741
Н	1.378949	-6.135932	-4.352476
Н	3.106181	-5.934214	-4.037784

Η	2.029167	-6.402456	-2.715899
Η	3.001598	-2.735704	-2.121934
Н	3.089486	-4.364596	-1.420721
Н	4.034485	-3.960618	-2.874064
Н	2.992638	-3.523304	-5.028672
Н	1.276217	-3.775315	-5.360832
Н	1.802430	-2.366614	-4.413867
Η	3.106181	-5.934214	4.037784
Η	1.378949	-6.135932	4.352476
Н	2.029167	-6.402456	2.715899
Н	3.089486	-4.364596	1.420721
Н	3.001598	-2.735704	2.121934
Η	4.034485	-3.960618	2.874064
Н	1.276217	-3.775315	5.360832
Н	2.992638	-3.523304	5.028672
Η	1.802430	-2.366614	4.413867

LRh+ optimized geometry ZSC-BLYP/TZ2P			
E=	-12.8137901	0 a.u.; negat	tive frequencies: none
С	-0.030832	-0.541075	0.000000
С	0.057674	0.149427	-1.208918
С	0.238611	1.532397	-1.177909
Ν	0.335361	2.235261	0.000000
С	0.238611	1.532397	1.177909
С	0.057674	0.149427	1.208918
Rh	0.604577	4.228206	0.000000
0	0.325925	2.214121	-2.343440
Р	0.531694	3.918441	-2.297977
С	-1.055012	4.518463	-3.186620
С	-2.243425	3.857185	-2.433644
0	0.325925	2.214121	2.343440
Р	0.531694	3.918441	2.297977
С	-1.055012	4.518463	3.186620
С	-1.142266	4.163011	4.689520
С	2.140614	4.065274	-3.327445
С	2.139991	3.208055	-4.618649
С	2.140614	4.065274	3.327445
С	2.139991	3.208055	4.618649
Ċ	2.383144	5.560869	3.662180
Ċ	3.273873	3.557531	2.390606
Ċ	-2.243425	3.857185	2.433644
Č	-1.127317	6.058795	2.984479
Č	2.383144	5.560869	-3.662180
Ċ	3.273873	3.557531	-2.390606
Č	-1.127317	6.058795	-2.984479
Ċ	-1.142266	4.163011	-4.689520
Ĥ	-0.009318	-0.348348	-2.169889
Н	-0.009318	-0.348348	2.169889
Н	-0.170733	-1.617946	0.000000
Н	-2.275568	2.774123	-2.591480
Н	-2.202352	4.052868	-1.355491
Н	-3.179859	4.280282	-2.820208
Н	-2.138056	4.446135	-5.058145
Н	-0.406895	4.706654	-5.291071
Н	-1.018939	3.088552	-4.866601
Н	-0.320848	6.592258	-3.498358
Н	-2.078354	6.424154	-3.394366
Н	-1.102354	6.329987	-1.920526
Н	-1.102354	6.329987	1.920526
Н	-2.078354	6.424154	3.394366
Н	-0.320848	6.592258	3.498358
Н	-2.202352	4.052868	1.355491
Н	-2.275568	2.774123	2.591480
Н	-3.179859	4.280282	2.820208
Н	-0.406895	4.706654	5.291071
Н	-2.138056	4.446135	5.058145
Н	-1.018939	3.088552	4.866601
Н	1.662758	5.946612	4.391214
Н	3.383701	5.666130	4.102239

Η	2.352093	6.198751	2.768456
Н	3.149459	2.498963	2.136030
Н	3.324108	4.130963	1.457560
Н	4.234659	3.662935	2.911594
Н	3.145211	3.252087	5.060303
Н	1.435064	3.572979	5.369469
Н	1.916006	2.156506	4.410260
Η	3.383701	5.666130	-4.102239
Η	1.662758	5.946612	-4.391214
Η	2.352093	6.198751	-2.768456
Η	3.324108	4.130963	-1.457560
Н	3.149459	2.498963	-2.136030
Η	4.234659	3.662935	-2.911594
Η	1.435064	3.572979	-5.369469
Н	3.145211	3.252087	-5.060303
Н	1.916006	2.156506	-4.410260

TS [**LIrCH**₄⁺-**LIr(H)CH**₃⁺] optimized geometry ZSC-BLYP/TZ2P

E=-13.717056 a.u.; one negative frequency: -712.7
cm ⁻¹ .

Ir	-0.514979	-0.017960	-0.000046
Р	-0.155766	0.019086	2.300933
Р	-0.155995	0.018298	-2.300861
0	1.570643	-0.030595	-2.336792
0	1.571019	-0.026165	2.336721
Ν	1.565843	-0.059153	-0.000018
С	2.266179	-0.062721	1.178303
С	2.265982	-0.064639	-1.178456
С	3.661144	-0.095903	1.212512
С	3.660925	-0.097547	-1.212937
С	4.352268	-0.115959	-0.000280
С	-0.500740	-1.567308	-3.332036
С	-0.464028	1.664727	-3.235076
С	-0.497864	-1.567211	3.331878
С	-0.467193	1.664633	3.235543
С	-2.744763	-0.377620	0.000036
С	0.274786	2.763557	2.424691
С	-1.991544	1.962320	3.208371
С	0.051189	1.674584	4.694111
С	-1.995608	-1.605412	3.734265
С	-0.188773	-2.755879	2.377842
С	0.398345	-1.702889	4.589676
С	0.055408	1.675004	-4.693333
С	-1.988034	1.964846	-3.209153
С	-1.998413	-1.603376	-3.734997
С	-0.194013	-2.756531	-2.377936
С	0.395558	-1.704169	-4.589608
С	0.279105	2.761897	-2.422921
Η	4.168601	-0.100980	2.170580
Η	4.168224	-0.104271	-2.171106
Η	5.438227	-0.140653	-0.000447
Η	-3.307894	-0.090403	-0.890427
Η	-2.604951	-1.464190	0.002430
Η	-3.309681	-0.087159	0.888394
Η	-1.878993	0.834252	-0.000137
Η	-2.162249	2.936045	3.686482
Η	-2.378468	2.026174	2.184814
Η	-2.578665	1.220524	3.759238
Η	1.361990	2.640982	2.469751
Η	-0.034045	2.771629	1.373935
Н	0.030661	3.740652	2.861797
Н	-0.029596	2.699081	5.082243
Н	-0.542749	1.031718	5.350909
Η	1.103193	1.377039	4.763112

Η	-2.212868	-2.584893	4.180921
Η	-2.243163	-0.844693	4.481765
Η	-2.665454	-1.483311	2.874500
Η	-0.804428	-2.729485	1.472819
Η	0.865313	-2.775865	2.078406
Η	-0.398862	-3.694123	2.908106
Η	0.162750	-0.964373	5.359259
Η	0.225819	-2.697096	5.024376
Η	1.462895	-1.627320	4.345963
Η	-0.028292	2.767893	-1.371710
Η	1.366216	2.639113	-2.469736
Η	0.034595	3.739940	-2.857693
Η	-0.540223	1.035208	-5.351680
Η	-0.021861	2.700380	-5.079914
Η	1.106497	1.374127	-4.762126
Η	-2.375091	2.031117	-2.185825
Η	-2.157087	2.937943	-3.689179
Η	-2.576199	1.223005	-3.758917
Η	-2.244422	-0.843253	-4.483675
Η	-2.217106	-2.583067	-4.180512
Η	-2.668387	-1.479084	-2.875660
Η	0.859047	-2.776254	-2.074929
Η	-0.812842	-2.731238	-1.475063
Η	-0.401802	-3.694505	-2.909608
Η	0.214803	-2.694645	-5.029401
Η	0.167460	-0.959815	-5.355779
Н	1.460425	-1.639191	-4.344268

Structure of the transition state of LIrCH₄⁺-LIr(H)CH₃⁺ Image produced with MOLDEN: G.Schaftenaar and J.H. Noordik, "Molden: a pre- and post-processing program for molecular and electronic structures", J. Comput.-Aided Mol. Design, 14 (2000) 123-134

TS [**LRhCH**₄⁺-**LRh(H)CH**₃⁺] optimized geometry ZSC-BLYP/TZ2P

E= -13.62489 a	a.u.; one negative	frequency: -631.6
cm^{-1} .		

Rh	-0.607364	-0.068670	0.000303
Р	-0.226423	0.020864	2.311272
Р	-0.226084	0.020994	-2.311612
0	1.498934	-0.085809	-2.331017
0	1.498661	-0.086536	2.331181
Ν	1.503728	-0.124800	0.000105
С	2.198697	-0.134632	1.174533
С	2.198821	-0.134305	-1.174229
С	3.593961	-0.187750	1.214138
С	3.594091	-0.187487	-1.213675
С	4.283481	-0.219423	0.000282
С	-0.604023	-1.523162	-3.390278
С	-0.468234	1.709199	-3.191869
С	-0.604539	-1.523305	3.390356
С	-0.468303	1.708918	3.191057
С	-2.760448	-0.431602	0.000419
С	0.310238	2.748133	2.336685
С	-1.981249	2.059845	3.157589
С	0.060813	1.748601	4.645344
С	-2.097844	-1.498215	3.809435
С	-0.347894	-2.740426	2.456198
С	0.305522	-1.656965	4.638023
С	0.062109	1.748930	-4.645756
С	-1.981237	2.059445	-3.159460
С	-2.097176	-1.497079	-3.810275
С	-0.348797	-2.740320	-2.455747
С	0.306473	-1.657935	-4.637522
С	0.309335	2.748698	-2.336924
Η	4.102972	-0.197541	2.171304
Η	4.103167	-0.197201	-2.170802
Η	5.368965	-0.261726	0.000388
Η	-3.316074	-0.120931	-0.888323
Η	-2.650202	-1.526096	-0.002649
Η	-3.313726	-0.125348	0.892084
Η	-1.786427	0.947515	0.001235
Η	-2.114660	3.062389	3.585499
Η	-2.373641	2.082783	2.134306
Η	-2.589052	1.367612	3.749432
Η	1.392269	2.585409	2.379699
Η	-0.005797	2.733442	1.287879
Η	0.107418	3.749501	2.738459
Η	0.014731	2.786612	5.002508
Η	-0.546799	1.144087	5.325913
Η	1.104011	1.420986	4.715226

Η	-2.346120	-2.458468	4.281167
Н	-2.308758	-0.711160	4.541108
Η	-2.771760	-1.371180	2.953285
Н	-0.987148	-2.720577	1.566783
Η	0.698240	-2.794515	2.133373
Η	-0.568859	-3.662258	3.010180
Н	0.116576	-0.881905	5.384577
Н	0.096698	-2.627087	5.109961
Η	1.367898	-1.637247	4.374365
Η	-0.008744	2.735540	-1.288748
Н	1.391347	2.585213	-2.377587
Η	0.108120	3.749704	-2.740375
Η	-0.545414	1.145088	-5.327040
Н	0.017200	2.787090	-5.002634
Н	1.105103	1.420567	-4.714967
Н	-2.374910	2.079989	-2.136587
Η	-2.114605	3.062915	-3.585230
Η	-2.587957	1.368256	-3.753603
Н	-2.306396	-0.711582	-4.544102
Н	-2.346525	-2.458185	-4.279680
Η	-2.771445	-1.366791	-2.954907
Н	0.696576	-2.793908	-2.130356
Н	-0.990236	-2.721089	-1.567915
Н	-0.567842	-3.662168	-3.010459
Н	0.094222	-2.626254	-5.111620
Н	0.121342	-0.880661	-5.382695
Η	1.368748	-1.643155	-4.373088

Structure of the transition state of LRhCH₄⁺-LRh(H)CH₃⁺ Image produced with MOLDEN: G.Schaftenaar and J.H. Noordik, "Molden: a pre- and post-processing program for molecular and electronic structures", J. Comput.-Aided Mol. Design, 14 (2000) 123-134

 $\mathbf{CH_5}^+$ optimized geometry ZSC-BLYP/TZ2P

С	-0.115867	0.097704	-0.159446
Η	-0.126283	0.319077	0.912359
Η	0.956824	0.079332	-0.477958
Η	-0.573323	-0.825340	-0.529244
Η	-0.010984	1.007015	-0.913312
Η	-0.949385	0.856916	-0.504474

.

Calculated NMR parameters

Only the isotropic averages of the shielding tensor σ and of the scalar coupling tensor J are reported. Atom numbering is the same as in the structures reported above k: reduced coupling constant, j: *J* coupling constant in Hz.

TMS ZSC-KT2/TZ2P//BLYP/TZ2P

Shielding Constants C(2): 190.53 ppm H(6): 31.33 ppm

LIrCH₄⁺ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Ir(1): 396.73 ppm
P(2): 134.48 ppm
P(3): 134.48 ppm
C(16): 212.58 ppm
H(29): 31.46 ppm
H(33): 27.41 ppm
H(34): 31.46 ppm
H(35): 35.63 ppm

Coupling Constants

С(16)-Н(29)	k=51.653	j=156.046
С(16)-Н(33)	k=42.150	j=127.335
С(16)-Н(34)	k=51.653	j=156.046
С(16)-Н(35)	k=22.605	j=68.289
C(16)-Ir(1)	k=-331.339	j=0.000
C(16)-P(2)	k=0.365	j=0.447
Ir(1)-P(2)	k=1603.549	j=0.000
Ir(1)-H(29)	k=24.645	j=0.000
Ir(1)-H(33)	k=18.653	j=0.000
Ir(1)-H(34)	k=24.645	j=0.000
Ir(1)-H(35)	k=161.143	j=0.000
P(2)-H(29)	k=0.782	j=3.805
P(2)-H(33)	k=-0.033	j=-0.162
P(2)-H(34)	k=0.553	j=2.693
P(2)-H(35)	k=-0.198	j=-0.965

TMS ZSO-KT2/TZ2P//BLYP/TZ2P

Shielding Constants C(2): 191.44 ppm H(6): 31.34 ppm

LIrCH₄⁺ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Ir(1): 2979.29 ppm
P(2): 151.98 ppm
P(3): 151.98 ppm
C(16): 236.62 ppm
H(29): 31.24 ppm
H(33): 27.61 ppm
H(34): 31.24 ppm
H(35): 37.68 ppm

C(16) - H(29)	k=51.655	i=156.051
C(10) = (20)	1-40 252	-107.040
C(16) - H(33)) K=42.353]=127.949
C(16)-H(34)	k=51.655	j=156.051
C(16)-H(35)	k=22.701	j=68.579
C(16)-Ir(1)	k=-334.260	j=0.000
C(16)-P(2)	k=0.245	j=0.300
Ir(1)-P(2)	k=1587.045	j=0.000
Ir(1)-H(29)	k=22.416	j=0.000
Ir(1)-H(33)	k=17.363	j=0.000
Ir(1)-H(34)	k=22.416	j=0.000
Ir(1)-H(35)	k=155.261	j=0.000
P(2)-H(29)	k=0.795	j=3.869
P(2)-H(33)	k=-0.035	j=-0.172
P(2)-H(34)	k=0.501	j=2.436
P(2)-H(35)	k=-0.205	j=-0.997

LIr(H)CH₃⁺ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P LIr(H)CH₃⁺ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Ir(1): -815.15 ppm
P(2): 139.95 ppm
P(3): 139.95 ppm
C(16): 174.17 ppm
H(29): 29.41 ppm
H(33): 30.47 ppm
H(34): 29.41 ppm
H(35): 42.94 ppm

Coupling Constants

С(16)-Н(29)	k=46.295	j=139.858
С(16)-Н(33)	k=42.748	j=129.144
С(16)-Н(34)	k=46.295	j=139.858
С(16)-Н(35)	k=-0.733	j=-2.216
C(16)-Ir(1)	k=614.855	j=0.000
C(16)-P(2)	k=-1.046	j=-1.280
Ir(1)-P(2)	k=1144.691	j=0.000
Ir(1)-H(29)	k=8.642	j=0.000
Ir(1)-H(33)	k=-36.070	j=0.000
Ir(1)-H(34)	k=8.642	j=0.000
Ir(1)-H(35)	k=674.310	j=0.000
P(2)-H(29)	k=0.723	j=3.520
P(2)-H(33)	k=-0.150	j=-0.732
P(2)-H(34)	k=2.140	j=10.418
P(2)-H(35)	k=-1.622	j=-7.896

LIr(H)CH₃⁺ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P LIr(H)CH₃⁺ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Ir(1): 1715.90 ppm
P(2): 154.69 ppm
P(3): 154.69 ppm
C(16): 193.17 ppm
H(29): 28.48 ppm
H(33): 29.07 ppm
H(34): 28.48 ppm
H(35): 62.68 ppm

Q (1 C) TT (0 0) 1 4 C 000	1 1 1 0 1 1 0
C(16) - H(29) = K = 46.389]=140.142
C(16)-H(33) k=42.677	j=128.930
C(16)-H(34) k=46.389	j=140.142
C(16)-H(35) k=-0.686	j=-2.072
C(16)-Ir(1) k=629.057	j=0.000
C(16)-P(2) k=-1.388	j=-1.699
Ir(1)-P(2) k=1114.872	j=0.000
Ir(1)-H(29) k=6.797	j=0.000
Ir(1)-H(33) k=-38.471	j=0.000
Ir(1)-H(34) k=6.797	j=0.000
Ir(1)-H(35) k=722.791	j=0.000
P(2)-H(29) k=0.712	j=3.465
P(2)-H(33) k=−0.164	j=-0.801
P(2)-H(34) k=2.088	j=10.166
P(2)-H(35) k=-1.510	j=-7.349

LIrCH₃ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P LIrCH₃ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Ir(1): 219.68 ppm
P(2): 152.83 ppm
P(3): 152.83 ppm
C(16): 187.18 ppm
H(32): 30.66 ppm
H(33): 31.33 ppm
H(34): 30.66 ppm

Coupling Constants

C(16)-H(32) k=43.594 j=131.700 C(16)-H(33) k=42.541 j=128.518 C(16)-H(34) k=43.594 j=131.700 C(16)-Ir(1) k=626.197 j=0.000 C(16)-P(2) k=-1.579 j=-1.933 Ir(1)-P(2) k=1947.891 j=0.000 Ir(1)-H(32) k=-9.736 j=0.000 Ir(1)-H(33) k=-17.723 j=0.000 Ir(1)-H(34) k=-9.736 j=0.000 P(2)-H(32) k=0.983 j=4.783 P(2)-H(33) k=-0.102 j=-0.495 P(2)-H(34) k=2.095 j=10.198

LIrCH₃ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Ir(1): 2507.29 ppm
P(2): 164.26 ppm
P(3): 164.26 ppm
C(16): 206.74 ppm
H(32): 29.56 ppm
H(33): 29.43 ppm
H(34): 29.56 ppm

Coupling Constants

C(16)-H(32) k=43.677 j=131.950 C(16)-H(33) k=42.486 j=128.353 C(16)-H(34) k=43.677 j=131.950 C(16)-Ir(1) k=643.241 j=0.000 C(16)-P(2) k=-2.008 j=-2.458 Ir(1)-P(2) k=1920.193 j=0.000 Ir(1)-H(32) k=-11.814 j=0.000 Ir(1)-H(33) k=-21.483 j=0.000 Ir(1)-H(34) k=-11.814 j=0.000 P(2)-H(32) k=0.970 j=4.724 P(2)-H(33) k=-0.140 j=-0.681 P(2)-H(34) k=2.039 j=9.925

LRhCH4⁺ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Rh(1): -1542.22 ppm P(2): 104.93 ppm P(3): 104.93 ppm C(16): 219.49 ppm H(32): 31.91 ppm H(33): 28.69 ppm H(34): 31.91 ppm H(35): 35.17 ppm

Coupling Constants

C(16)-H(32)	k=51.204	j=154.691
C(16)-H(33)	k=38.726	j=116.993
C(16)-H(34)	k=51.204	j=154.691
C(16)-H(35)	k=25.605	j=77.353
C(16)-Rh(1)	k=-44.590	j=4.260
C(16)-P(2)	k=-0.028	j=-0.035
Rh(1)-P(2)	k=589.326	j=-90.718
Rh(1)-H(32)	k=10.743	j=-4.081
Rh(1)-H(33)	k=13.789	j=-5.238
Rh(1)-H(34)	k=10.743	j=-4.081
Rh(1)-H(35)	k=47.107	j=-17.894
P(2)-H(32)	k=0.496	j=2.415
P(2)-H(33)	k=-0.093	j=−0.454
P(2)-H(34)	k=0.845	j=4.114
P(2)-H(35)	k=-0.272	j=-1.326

LRhCH₄⁺ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P LRhCH₄⁺ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Rh(1): -1047.72 ppm P(2): 128.98 ppm P(3): 128.98 ppm C(16): 229.47 ppm H(32): 31.98 ppm H(33): 29.00 ppm H(34): 31.98 ppm H(35): 36.30 ppm

1 0		
C(16)-H(32)	k=51.212	j=154.713
С(16)-Н(33)	k=38.770	j=117.124
С(16)-Н(34)	k=51.212	j=154.713
С(16)-Н(35)	k=25.629	j=77.425
C(16)-Rh(1)	k=-40.499	j=3.869
C(16)-P(2)	k=-0.116	j=-0.142
Rh(1)-P(2)	k=602.932	j=-92.812
Rh(1)-H(32)	k=10.537	j=-4.003
Rh(1)-H(33)	k=13.730	j=-5.215
Rh(1)-H(34)	k=10.537	j=-4.003
Rh(1)-H(35)	k=46.997	j=-17.852
P(2)-H(32)	k=0.494	j=2.404
P(2)-H(33)	k=-0.098	j=-0.479
P(2)-H(34)	k=0.834	j=4.060
P(2)-H(35)	k=-0.292	j=-1.421

LRh(H)CH₃⁺ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P LRh(H)CH₃⁺ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Rh(1): -1534.11 ppm P(2): 121.06 ppm P(3): 121.06 ppm C(16): 172.63 ppm H(32): 29.44 ppm H(33): 30.26 ppm H(34): 29.44 ppm H(35): 41.00 ppm

Couping Constants

С(16)-Н(32)) k=47.956	j=144.876
С(16)-Н(33)) k=44.077	j=133.159
С(16)-Н(34)) k=47.956	j=144.876
С(16)-Н(35)) k=-0.854	j=-2.581
C(16)-Rh(1)) k=181.605	j=-17.350
C(16)-P(2)	k=-2.091	j=-2.560
Rh(1)-P(2)	k=474.991	j=-73.117
Rh(1)-H(32)) k=1.727	j=-0.656
Rh(1)-H(33)) k=-10.635	j=4.040
Rh(1)-H(34)) k=1.727	j=-0.656
Rh(1)-H(35)) k=172.521	j=-65.533
P(2)-H(32)	k=0.294	j=1.431
P(2)-H(33)	k=-0.114	j=-0.555
P(2)-H(34)	k=2.892	j=14.078
P(2)-H(35)	k=-1.498	j=-7.293

LRh(H)CH₃⁺ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P LRh(H)CH₃⁺ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Rh(1): -1109.38 ppm P(2): 141.02 ppm P(3): 141.02 ppm C(16): 183.20 ppm H(32): 29.40 ppm H(33): 30.28 ppm H(34): 29.40 ppm H(35): 49.76 ppm

C(16)-H(32) k=48.00)5 j=145.024
C(16)-H(33) k=44.08	34 j=133.178
C(16)-H(34) k=48.00)5 j=145.024
C(16)-H(35) k=-0.86	58 j=-2.623
C(16)-Rh(1) k=190.3	346 j=-18.185
C(16) - P(2) k = -2.204	i j=−2.698
Rh(1)-P(2) k=483.51	_3 j=-74.429
Rh(1)-H(32) k=1.248	j=−0.474
Rh(1)-H(33) k=-10.8	394 j=4.138
Rh(1)-H(34) k=1.248	j=−0.474
Rh(1)-H(35) k=185.7	j=-70.569
P(2)-H(32) k=0.287	j=1.398
P(2)-H(33) k=-0.113	j=−0.548
P(2)-H(34) k=2.886	j=14.047
P(2)-H(35) k=-1.463	j=−7.120

LRhCH₃ ZSC-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Rh(1): -1040.73 ppm P(2): 128.94 ppm P(3): 128.94 ppm C(16): 193.11 ppm H(32): 30.91 ppm H(33): 31.81 ppm H(34): 30.91 ppm

Coupling Constants

C(16)-H(32) k=44.576 j=134.666 C(16)-H(33) k=43.270 j=130.722 C(16)-H(34) k=44.576 j=134.666 C(16)-Rh(1) k=204.065 j=-19.496 C(16)-P(2) k=-4.140 j=-5.069 Rh(1)-P(2) k=910.905 j=-140.220 Rh(1)-H(32) k=-3.399 j=1.291 Rh(1)-H(33) k=-4.921 j=1.869 Rh(1)-H(34) k=-3.399 j=1.291 P(2)-H(32) k=0.482 j=2.346 P(2)-H(33) k=-0.032 j=-0.155 P(2)-H(34) k=2.975 j=14.480

LRhCH₃ ZSO-KT2/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

Rh(1): -627.84 ppm P(2): 148.61 ppm P(3): 148.61 ppm C(16): 205.78 ppm H(32): 30.80 ppm H(33): 31.40 ppm H(34): 30.80 ppm

Coupling Constants

C(16)-H(32) k=44.612 j=134.775 C(16)-H(33) k=43.267 j=130.710 C(16)-H(34) k=44.612 j=134.775 C(16)-Rh(1) k=214.982 j=-20.539 C(16)-P(2) k=-4.355 j=-5.332 Rh(1)-P(2) k=923.088 j=-142.095 Rh(1)-H(32) k=-3.889 j=1.477 Rh(1)-H(33) k=-5.608 j=2.130 Rh(1)-H(34) k=-3.889 j=1.477 P(2)-H(32) k=0.465 j=2.266 P(2)-H(33) k=-0.042 j=-0.204 P(2)-H(34) k=2.961 j=14.413

L'Rh(H)CH₃ ZSO-KT2/TZ2P//Model geom¹

Shielding Constants Rh(1): -1115.53 ppm P(2): 152.39 ppm C(12): 182.57 ppm H(32): 29.61 ppm H(33): 30.61 ppm H(34): 29.61 ppm H(35): 50.34 ppm

Coupling Constants

C (12) -H (32) k=48.596 j=146.811 C (12) -H (33) k=44.094 j=133.209 C (12) -H (34) k=48.597 j=146.813 C (12) -H (35) k=-0.844 j=-2.548 C (12) -H (35) k=-2.188 j=-2.678 Rh (1) -P (2) k=527.928 j=-81.266 Rh (1) -H (32) k=1.438 j=-0.546 Rh (1) -H (33) k=-10.746 j=4.082 Rh (1) -H (34) k=1.438 j=-0.546 Rh (1) -H (35) k=193.833 j=-73.629 P (2) -H (32) k=0.518 j=2.521 P (2) -H (33) k=-0.170 j=-0.830 P (2) -H (34) k=3.863 j=18.805 P (2) -H (35) k=-2.405 j=-11.705

TMS ZSO-KT2/QZ4P//ZSC-BLYP/TZ2P

Shielding Constants

C(2): 186.60 ppm H(6): 31.11 ppm

L'Rh(H)CH₃ ZSO-KT2/QZ4P//Model geom¹

Shielding Constants

Rh(1): -1199.58 ppm P(2): 121.00 ppm C(12): 176.81 ppm H(32): 29.42 ppm H(33): 30.31 ppm H(34): 29.45 ppm H(35): 50.25 ppm

Coupling Constants

C(12)-H(32) k=45.688 j=138.025 C(12)-H(33) k=41.724 j=126.049 C(12)-H(34) k=45.686 j=138.021 C(12)-H(35) k=-0.879 j=-2.655 C(12)-Rh(1) k=177.642 j=-16.971 C(12)-P(2) k=-2.401 j=-2.939 Rh(1)-P(2) k=559.066 j=-86.060 Rh(1)-H(32) k=1.567 j=-0.595 Rh(1)-H(33) k=-11.070 j=4.205 Rh(1)-H(34) k=1.566 j=-0.595 Rh(1)-H(35) k=202.433 j=-76.896 P(2)-H(32) k=0.520 j=2.533 P(2)-H(34) k=3.710 j=18.059 P(2)-H(35) k=-2.530 j=-12.315

¹Model geom means a model system where the *t*-Bu groups of PONOP have been replaced by methyl groups

L'Ir(H)CH₃ ZSO-KT2/TZ2P//Model geom¹

Shielding Constants Ir(1): 1777.37 ppm P(3): 164.47 ppm C(12): 192.22 ppm H(29): 28.73 ppm H(33): 29.38 ppm H(34): 28.71 ppm H(35): 62.96 ppm

Coupling Constants С(12)-Н(29) k=48.149 j=145.461 C(12)-H(33) k=44.034 j=133.029 C(12)-H(34) k=48.149 j=145.461 С(12)-H(35) k=-0.669 j=-2.020 C(12)-Ir(1) k=609.935 j=0.000 C(12)-P(2) k=-0.986 j=-1.207 Ir(1)-P(2) k=1193.718 j=0.000 Ir(1)-H(29) k=9.031 j=0.000 Ir(1)-H(33) k=-39.789 j=0.000 Ir(1)-H(34) k=9.031 j=0.000 Ir(1)-H(35) k=760.445 j=0.000 P(2)-H(29) k=1.197 j=5.825 P(2)-H(33) k=-0.249 j=-1.213 P(2)-H(34) k=2.796 j=13.610 P(2)-H(35) k=-1.903 j=-9.264

L'Ir(H)CH₃ ZSO-KT2/QZ4P//Model geom¹

Shielding Constants Ir(1): 1932.07 ppm P(3): 136.38 ppm C(12): 187.73 ppm H(29): 28.86 ppm H(33): 29.33 ppm H(34): 28.89 ppm H(35): 63.71 ppm Coupling Constants C(12)-H(29) k=43.987 j=132.887 C(12)-H(33) k=39.132 j=118.220 С(12)-H(34) k=43.988 j=132.889 C(12)-H(35) k=-0.707 j=-2.136 C(12)-Ir(1) k=637.912 j=0.000 C(12)-P(2) k=-1.215 j=-1.488 Ir(1)-P(2) k=1411.038 j=0.000 Ir(1)-H(29) k=11.112 j=0.000 Ir(1)-H(33) k=-44.430 j=0.000 Ir(1)-H(34) k=11.113 j=0.000 Ir(1)-H(35) k=873.477 j=0.000 P(2)-H(29) k=1.244 j=6.055 P(2)-H(33) k=-0.227 j=-1.104 P(2)-H(34) k=2.644 j=12.872 P(2)-H(35) k=-2.111 j=-10.274

¹Model geom means a model system where the *t*-Bu groups of PONOP have been replaced by methyl groups

TMS ZSO-SAOP/TZ2P//ZSC-BLYP/TZ2P

Shielding Constants

C(2): 186.45 ppm H(6): 31.74 ppm

LIr(H)CH₃⁺ ZSO-SAOP/TZ2P//BLYP/TZ2P

Shielding Constants Ir(1): 2086.38 ppm P(2): 148.22 ppm P(3): 148.22 ppm C(16): 186.10 ppm H(29): 29.17 ppm H(33): 29.90 ppm H(34): 29.17 ppm H(35): 60.36 ppm

LIrCH₄⁺ ZSO-SAOP/TZ2P//BLYP/TZ2P

Shielding Constants Ir(1): 3413.78 ppm P(2): 150.71 ppm P(3): 150.71 ppm C(16): 226.27 ppm H(29): 31.58 ppm H(33): 28.37 ppm H(34): 31.58 ppm H(35): 37.32 ppm

LRh(H)CH₃⁺ ZSO-SAOP/TZ2P//BLYP/TZ2P

Shielding Constants Rh(1): -583.03 ppm P(2): 142.25 ppm P(3): 142.25 ppm C(16): 174.89 ppm H(32): 29.87 ppm H(33): 30.65 ppm H(34): 29.87 ppm H(35): 46.74 ppm

LRhCH4⁺ ZSO-SAOP/TZ2P//BLYP/TZ2P

Shielding Constants Rh(1): -419.57 ppm P(2): 133.35 ppm P(3): 133.35 ppm C(16): 218.22 ppm H(32): 32.16 ppm H(33): 29.38 ppm H(34): 32.16 ppm H(35): 35.55 ppm

LIrCH₄⁺ ZSC-BLYP/TZ2P//M4 LIrCH₄⁺ ZSC-BLYP/TZ2P//M4

Shielding Constants

Ir(1): 725.76 ppm
P(2): 66.36 ppm
P(3): 66.36 ppm
C(16): 201.54 ppm
H(29): 31.63 ppm
H(33): 26.78 ppm
H(34): 31.63 ppm
H(35): 34.00 ppm

LIrCH4⁺ ZSC-M06-L/TZ2P//M4

Shielding Constants

Ir(1): 1542.93 ppm
P(2): 171.74 ppm
P(3): 171.79 ppm
C(16): 217.84 ppm
H(29): 30.22 ppm
H(33): 32.10 ppm
H(34): 30.23 ppm
H(35): 40.08 ppm

LIr(H)CH₃⁺ BLYP/TZ2P//M4 (NON REL)

Shielding Constants

Ir(î	1):	8	6	0.	83	3	ppm
P(2)):	64	•	44	ł	pp	m
P(3)):	64	•	44	ł	pp	m
C(1)	6):	1	6	6.	12	2	ppm
H(29	9):	2	9	.6	6	р	pm
н(З	3):	3	1	.0	0	р	pm
н(З4	4):	2	9	.6	6	р	pm
н(З	5):	4	0	.4	4	р	pm

LIrCH₄⁺ ZSO-BLYP/TZ2P//M4 LIrCH₄⁺ ZSO-BLYP/TZ2P//M4

Shielding Constants

Ir(1): 3152.29 ppm
P(2): 81.36 ppm
P(3): 81.35 ppm
C(16): 223.90 ppm
H(29): 31.19 ppm
H(33): 27.56 ppm
H(34): 31.19 ppm
H(35): 35.71 ppm

LIrCH4⁺ ZSO-M06-L/TZ2P//M4

Shielding Constants

Ir(1): 3949.26 ppm
P(2): 185.48 ppm
P(3): 185.54 ppm
C(16): 237.87 ppm
H(29): 30.05 ppm
H(33): 32.41 ppm
H(34): 30.06 ppm
H(35): 42.06 ppm

LIr(H)CH₃⁺ BLYP/TZ2P//M4 (NON REL)

Coupling Constants

С(16)-Н(29)	k=51.657	j=156.057
С(16)-Н(33)	k=48.792	j=147.403
С(16)-Н(34)	k=51.655	j=156.052
С(16)-Н(35)	k=-0.435	j=-1.314
C(16)-Ir(1)	k=451.560	j=0.000
C(16)-P(2)	k=-4.099	j=-5.018
Ir(1)-P(2)	k=1220.052	j=0.000
Ir(1)-H(29)	k=-1.312	j=0.000
Ir(1)-H(33)	k=-22.514	j=0.000
Ir(1)-H(34)	k=-1.310	j=0.000
Ir(1)-H(35)	k=426.154	j=0.000
P(2)-H(29)	k=-0.034	j=-0.167
P(2)-H(33)	k=-0.250	j=-1.218
P(2)-H(34)	k=3.491	j=16.992
P(2)-H(35)	k=0.038	j=0.186

M4 means geometries optimized in Ref. W. H. Bernskoetter, C. K. Schauer, K. I. Goldberg and M. Brookhart, *Science*, 2009, **326**, 553 at the M4 level.

LIr(H)CH₃⁺ ZSC-BLYP/TZ2P//M4 LIr(H)CH₃⁺ ZSC-BLYP/TZ2P//M4

Shielding Constants

Ιı	r (1)	:		-	7	6	4	•	9	0		p	pm
Ρ	(2)	:		7	3	•	6	0		р	р	m		
Ρ	(3)	:		7	3	•	6	0		p	р	m		
С	(1	6)	:		1	6	2	•	1	4		p	pı	m
Η	(2	9)	:		2	9	•	7	1		р	p	m	
Η	(3	3)	:		3	0	•	8	4		р	p	m	
Η	(3	4)	:		2	9	•	7	1		р	p	m	
Η	(3	5)	:		4	3	•	8	4		р	p	m	

Coupling Constants

C(16)-H(29)	k=51.180	j=154.618
C(16)-H(33)	k=47.575	j=143.726
C(16)-H(34)	k=51.178	j=154.610
C(16)-H(35)	k=-1.326	j=-4.005
C(16)-Ir(1)	k=763.482	j=0.000
C(16)-P(2)	k=-3.054	j=-3.739
Ir(1)-P(2)	k=1478.668	j=0.000
Ir(1)-H(29)	k=0.135	j=0.000
Ir(1)-H(33)	k=-42.548	j=0.000
Ir(1)-H(34)	k=0.136	j=0.000
Ir(1)-H(35)	k=836.423	j=0.000
P(2)-H(29)	k=0.688	j=3.351
P(2)-H(33)	k=-0.222	j=-1.079
P(2)-H(34)	k=2.466	j=12.001
P(2)-H(35)	k=-2.402	j=-11.691

LIr(H)CH₃⁺ ZSO-BLYP/TZ2P//M4 LIr(H)CH₃⁺ ZSO-BLYP/TZ2P//M4

Shielding Constants

Ir(1): 1760.05 ppm
P(2): 82.53 ppm
P(3): 82.53 ppm
C(16): 177.07 ppm
H(29): 28.84 ppm
H(33): 29.35 ppm
H(34): 28.84 ppm
H(35): 63.01 ppm

1 0		
C(16)-H(29)	k=51.273	j=154.898
C(16)-H(33)	k=47.477	j=143.429
C(16)-H(34)	k=51.271	j=154.891
C(16)-H(35)	k=-1.228	j=-3.710
C(16)-Ir(1)	k=774.745	j=0.000
C(16)-P(2)	k=-3.493	j=-4.276
Ir(1)-P(2)	k=1430.796	j=0.000
Ir(1)-H(29)	k=-1.772	j=0.000
Ir(1)-H(33)	k=-45.362	j=0.000
Ir(1)-H(34)	k=-1.769	j=0.000
Ir(1)-H(35)	k=891.294	j=0.000
P(2)-H(29)	k=0.669	j=3.256
P(2)-H(33)	k=-0.246	j=-1.199
P(2)-H(34)	k=2.412	j=11.742
P(2)-H(35)	k=-2.198	j=-10.698

LIr(H)CH₃⁺ ZSC-M06-L/TZ2P//M4 **LIr(H)CH₃⁺** ZSC-M06-L/TZ2P//M4

Shielding Constants

Ir(1): 96.92 ppm
P(2): 179.06 ppm
P(3): 179.07 ppm
C(16): 176.99 ppm
H(29): 30.39 ppm
H(33): 31.26 ppm
H(34): 30.39 ppm
H(35): 49.09 ppm

LIr(H)CH₃⁺ ZSO-M06-L/TZ2P//M4

Shielding Constants

Ir(1): 2577.13 ppm
P(2): 191.25 ppm
P(3): 191.25 ppm
C(16): 192.59 ppm
H(29): 29.65 ppm
H(33): 30.17 ppm
H(34): 29.65 ppm
H(35): 65.60 ppm

LIr(H)CH₃⁺ ZSC-KT2/TZ2P//M4

Shielding Constants

Ir(1): -547.09 ppm
P(2): 159.50 ppm
P(3): 159.51 ppm
C(16): 173.27 ppm
H(29): 29.47 ppm
H(33): 30.65 ppm
H(34): 29.47 ppm
H(35): 43.00 ppm

Coupling Constants

C(16) - H(29)	k=45 460	i=137 335
0(10) 11(20)	10.100	J 107.000
C(16)-H(33)	k=42.039	j=127.000
С(16)-Н(34)	k=45.457	j=137.329
С(16)-Н(35)	k=-0.680	j=-2.054
C(16)-Ir(1)	k=636.549	j=0.000
C(16)-P(2)	k=-1.177	j=-1.441
Ir(1)-P(2)	k=1238.256	j=0.000
Ir(1)-H(29)	k=9.859	j=0.000
Ir(1)-H(33)	k=-33.182	j=0.000
Ir(1)-H(34)	k=9.861	j=0.000
Ir(1)-H(35)	k=657.489	j=0.000
P(2)-H(29)	k=0.771	j=3.754
P(2)-H(33)	k=-0.176	j=-0.858
P(2)-H(34)	k=2.279	j=11.093
P(2)-H(35)	k=-1.517	j=-7.383

LIr(H)CH₃⁺ ZSO-KT2/TZ2P//M4 Shielding Constant

Ir(1): 1969.51 ppm
P(2): 168.54 ppm
P(3): 168.54 ppm
C(16): 189.59 ppm
H(29): 28.32 ppm
H(33): 29.24 ppm
H(34): 28.32 ppm
H(35): 61.79 ppm

C(16)-H(29) k=45.540	j=137.580
C(16)-H(33) k=41.942	j=126.708
C(16)-H(34) k=45.538	j=137.573
C(16)-H(35) k=-0.603	j=-1.822
C(16)-Ir(1) k=643.653	j=0.000
C(16)-P(2) k=-1.587	j=-1.943
Ir(1)-P(2) k=1195.198	j=0.000
Ir(1)-H(29) k=8.102	j=0.000
Ir(1)-H(33) k=-35.685	j=0.000
Ir(1)-H(34) k=8.104	j=0.000
Ir(1)-H(35) k=702.890	j=0.000
P(2)-H(29) k=0.753	j=3.667
P(2)-H(33) k=-0.200	j=-0.975
P(2)-H(34) k=2.228	j=10.844
P(2)-H(35) k=-1.394	j=-6.786

LRhCH₄⁺ ZSC-BLYP/TZ2P//M4 **LRhCH**₄⁺ ZSC-BLYP/TZ2P//M4 Shielding Constants

Rh(1): -1233.55 ppm P(2): 41.88 ppm P(3): 41.90 ppm C(16): 210.14 ppm H(32): 32.19 ppm H(33): 28.54 ppm H(34): 32.19 ppm H(35): 33.22 ppm

Coupling Constants

C(16)-H(32)	k=57.048	j=172.344
C(16)-H(33)	k=41.833	j=126.379
C(16)-H(34)	k=57.048	j=172.345
C(16)-H(35)	k=31.540	j=95.283
C(16)-Rh(1)	k=-62.115	j=5.934
C(16)-P(2)	k=-0.714	j=-0.875
Rh(1)-P(2)	k=717.704	j=-110.479
Rh(1)-H(32)	k=11.944	j=-4.537
Rh(1)-H(33)	k=28.395	j=-10.786
Rh(1)-H(34)	k=11.947	j=-4.538
Rh(1)-H(35)	k=55.756	j=-21.179
P(2)-H(32)	k=0.484	j=2.356
P(2)-H(33)	k=-0.248	j=-1.206
P(2)-H(34)	k=1.179	j=5.740
P(2)-H(35)	k=-0.469	j=-2.283

LRhCH₄⁺ BLYP/TZ2P//M4 (NON REL)

Shielding Constants

Rh(1): -994.91 ppm P(2): 37.26 ppm P(3): 37.26 ppm C(16): 209.86 ppm H(32): 32.08 ppm H(33): 28.62 ppm H(34): 32.08 ppm H(35): 32.94 ppm

LRhCH₄⁺ZSO-BLYP/TZ2P//M4

Shielding Constants

Rh(1)	:	-7	8	3	•	1	0	pp	pm
P(2):		65.	3	3		p	pn	1	
P(3):		65.	3	4		p	pn	1	
C(16)	:	21	9	•	6	0	F	ppr	n
H(32)	:	32	•	1	8]	pp	DM	
Н(ЗЗ)	:	29	١.	1	8]	pp	DM	
H(34)	:	32		1	8]	pp	DM	
H(35)	:	34	•	3	1]	pp	om	

Coupling Constants

-	
C(16)-H(32) k=57.057	j=172.371
C(16)-H(33) k=41.872	j=126.496
C(16)-H(34) k=57.057	j=172.373
C(16)-H(35) k=31.562	j=95.351
C(16)-Rh(1) k=-57.585	j=5.501
C(16)-P(2) k=-0.824	j=-1.009
Rh(1)-P(2) k=729.343	j=-112.271
Rh(1)-H(32) k=11.680	j=-4.437
Rh(1)-H(33) k=28.433	j=-10.801
Rh(1)-H(34) k=11.683	j=-4.438
Rh(1)-H(35) k=55.734	j=-21.171
P(2)-H(32) k=0.481	j=2.343
P(2)-H(33) k=-0.253	j=-1.231
P(2)-H(34) k=1.167	j=5.678
P(2)-H(35) k=-0.484	j=-2.357

LRhCH₄⁺ BLYP/TZ2P//M4 (**NON REL**) Coupling Constants

С(16)-Н(32)	k=56.990	j=172.169
С(16)-Н(33)	k=42.272	j=127.706
C(16)-H(34)	k=56.990	j=172.168
С(16)-Н(35)	k=32.241	j=97.400
C(16)-Rh(1)	k=-24.713	j=2.361
C(16)-P(2)	k=-1.269	j=-1.554
Rh(1)-P(2)	k=594.753	j=-91.553
Rh(1)-H(32)	k=10.398	j=-3.950
Rh(1)-H(33)	k=24.075	j=-9.145
Rh(1)-H(34)	k=10.401	j=-3.951
Rh(1)-H(35)	k=46.077	j=-17.503
P(2)-H(32)	k=0.310	j=1.511
P(2)-H(33)	k=-0.239	j=-1.162
P(2)-H(34)	k=1.432	j=6.969
P(2)-H(35)	k=-0.411	j=-2.000

LRhCH⁺₄ ZSC-M06-L/TZ2P//M4 **LRhCH**⁺₄ ZSC-M06-L/TZ2P//M4 Shielding Constants

Rh(1): -568.12 ppm P(2): 141.99 ppm P(3): 141.96 ppm C(16): 222.90 ppm H(32): 30.32 ppm H(33): 34.75 ppm H(34): 30.32 ppm H(35): 38.75 ppm

Coupling Constants

C(16)-H(32)	k=48.716	j=147.171
C(16)-H(33)	k=34.045	j=102.850
C(16)-H(34)	k=48.728	j=147.208
C(16)-H(35)	k=24.444	j=73.845
C(16)-Rh(1)	k=-31.517	j=3.011
C(16)-P(2)	k=0.062	j=0.076
Rh(1)-P(2)	k=544.708	j=-83.849
Rh(1)-H(32)	k=9.534	j=-3.622
Rh(1)-H(33)	k=20.087	j=-7.630
Rh(1)-H(34)	k=9.540	j=-3.624
Rh(1)-H(35)	k=39.940	j=-15.172
P(2)-H(32)	k=0.456	j=2.217
P(2)-H(33)	k=-0.114	j=-0.554
P(2)-H(34)	k=0.818	j=3.979
P(2)-H(35)	k=-0.207	j=-1.007

LRhCH4⁺ ZSC-BLYP/QZ4P//M4

Shielding Constants

Rh(1): -1310.37 ppm P(2): 21.31 ppm P(3): 21.33 ppm C(16): 206.61 ppm H(32): 31.98 ppm H(33): 28.27 ppm H(34): 31.98 ppm H(35): 33.05 ppm

LRhCH⁺ ZSO-M06-L/TZ2P//M4 **LRhCH**⁺ ZSO-M06-L/TZ2P//M4 Shielding Constants

Rh(1)	:	-130.	74 ppm
P(2):	1	162.17	ppm
P(3):	1	162.14	ppm
C(16)	:	230.8	2 ppm
H(32)	:	30.36	ppm
H(33)	:	35.17	ppm
H(34)	:	30.36	ppm
H(35)	:	39.61	ppm

LRhCH⁺₄ ZSC-KT2/TZ2P//M4 **LRhCH**⁺₄ ZSC-KT2/TZ2P//M4 Shielding Constants

Rh(1): -1083.84 ppm P(2): 125.34 ppm P(3): 125.35 ppm C(16): 219.57 ppm H(32): 32.04 ppm H(33): 28.30 ppm H(34): 32.04 ppm H(35): 33.04 ppm

Coupling Constants

C(16)-H(32)	k=51.475	j=155.509
C(16)-H(33)	k=35.811	j=108.187
C(16)-H(34)	k=51.476	j=155.512
C(16)-H(35)	k=25.938	j=78.360
C(16)-Rh(1)	k=-44.964	j=4.296
C(16)-P(2)	k=-0.050	j=-0.062
Rh(1)-P(2)	k=600.358	j=-92.416
Rh(1)-H(32)	k=12.358	j=-4.694
Rh(1)-H(33)	k=24.690	j=-9.379
Rh(1)-H(34)	k=12.362	j=-4.696
Rh(1)-H(35)	k=51.175	j=-19.439
P(2)-H(32)	k=0.573	j=2.791
P(2)-H(33)	k=-0.142	j=-0.691
P(2)-H(34)	k=1.122	j=5.461
P(2)-H(35)	k=-0.266	j=-1.295

LRhCH₄⁺ ZSO-KT2/TZ2P//M LRhCH₄⁺ ZSO-KT2/TZ2P//M

Shielding Constants

Rh(1)	:	-6	32.	58	ppm
P(2):	1	L46	.72	pp	m
P(3):	1	L46	.72	pp	m
C(16)	:	22	9.3	3 р	pm
H(32)	:	32	.02	pp	m
H(33)	:	28	.79	pp	m
H(34)	:	32	.02	pp	m
H(35)	:	34	.07	pp	m

1 0	
C(16)-H(32) k=51.482	j=155.530
C(16)-H(33) k=35.849	j=108.303
C(16)-H(34) k=51.483	j=155.533
C(16)-H(35) k=25.960	j=78.427
C(16)-Rh(1) k=-40.699	j=3.888
C(16)-P(2) k=-0.150	j=-0.184
Rh(1)-P(2) k=610.036	j=-93.906
Rh(1)-H(32) k=12.129	j=-4.607
Rh(1)-H(33) k=24.716	j=-9.389
Rh(1)-H(34) k=12.133	j=-4.609
Rh(1)-H(35) k=51.186	j=-19.443
P(2)-H(32) k=0.570	j=2.774
P(2)-H(33) k=-0.148	j=-0.721
P(2)-H(34) k=1.110	j=5.405
P(2)-H(35) k=-0.282	j=-1.374

LRh(H)CH₃⁺ZSC-BLYP/TZ2P//M4 **LRh(H)CH₃⁺**ZSC-BLYP/TZ2P//M4 Shielding Constants

Rh(1): -1407.82 ppm P(2): 58.94 ppm P(3): 58.91 ppm C(16): 163.09 ppm H(32): 29.93 ppm H(33): 30.87 ppm H(34): 29.93 ppm H(35): 42.19 ppm

LRh(H)CH₃⁺ZSC-M06-L/TZ2P//M4

Shielding Constants

Rh(1)	:	-730.7	2 ppm
P(2):		160.78	ppm
P(3):		160.73	ppm
C(16)	:	175.02	ppm
H(32)	:	30.64	ppm
Н(ЗЗ)	:	31.84	ppm
H(34)	:	30.64	ppm
H(35)	:	45.56	ppm

LRh(H)CH₃⁺ZSO-BLYP/TZ2P//M4 **LRh(H)CH₃⁺**ZSO-BLYP/TZ2P//M4 Shielding Constants

Rh(1): -994.02 ppm P(2): 77.59 ppm P(3): 77.56 ppm C(16): 172.20 ppm H(32): 29.90 ppm H(33): 30.90 ppm H(34): 29.90 ppm H(35): 50.17 ppm

LRh(H)CH₃⁺ ZSO-M06-L/TZ2P//M4

Shielding Constants

Rh(1)	:	-321.	06 ppm
P(2):		178.17	ppm
P(3):		178.12	ppm
C(16)	:	184.2	4 ppm
H(32)	:	30.59	ppm
H(33)	:	31.85	ppm
H(34)	:	30.59	ppm
H(35)	:	52.34	ppm

LRh(H)CH₃⁺ZSC-KT2/TZ2P//M4 **LRh(H)CH₃⁺**ZSC-KT2/TZ2P//M4 Shielding Constants

Rh(1): -1186.68 ppm P(2): 143.68 ppm P(3): 143.66 ppm C(16): 174.35 ppm H(32): 29.64 ppm H(33): 30.67 ppm H(34): 29.64 ppm H(35): 41.17 ppm

Coupling Constants

С(16)-Н(32)	k=46.396	j=140.164
C(16)-H(33)	k=43.097	j=130.198
C(16)-H(34)	k=46.397	j=140.168
C(16)-H(35)	k=-0.836	j=−2.527
C(16)-Rh(1)	k=184.591	j=-17.635
C(16)-P(2)	k=-2.333	j=-2.856
Rh(1)-P(2)	k=508.105	j=-78.215
Rh(1)-H(32)	k=2.083	j=-0.791
Rh(1)-H(33)	k=-10.447	j=3.968
Rh(1)-H(34)	k=2.082	j=-0.791
Rh(1)-H(35)	k=164.902	j=-62.639
P(2)-H(32)	k=0.375	j=1.824
P(2)-H(33)	k=-0.148	j=-0.722
P(2)-H(34)	k=3.217	j=15.661
P(2)-H(35)	k=-1.307	j=-6.360

¹For Si, Rh and Ir we used the LANL08d and LANL08(f) of Refs. P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 299 (1985); L.E. Roy, P.J. Hay, and R.L. Martin, J. Chem. Theory Comput. 4, 1029 (2008); A.W. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A. Hollwarth, V. Jonas, K.F. Kohler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 208, 111 (1993); C.E. Check, T.O. Faust, J.M. Bailey, B.J. Wright, T.M. Gilbert and L.S. Sunderlin, J Phys. Chem. A 105, 8111 (2001)

LRh(H)CH₃⁺ ZSO-KT2/TZ2P//M4 Shielding Constants

ome	iui	115		110	uun	10
Rh (1):	-	77	3.	32	ppm
P(2)	:	16	Ο.	95	pp	m
P(3)	:	16	Ο.	93	pp	m
C(16	5):	1	83	.9	4 p	pm
Н(32	2):	2	9.	51	pp	m
н(33	3):	3	Ο.	65	pp	m
н(34):	2	9.	51	pp	m
Н(35	;):	4	9.	02	pp	m

C(16)-H(32)	k=46.439	j=140.293
C(16)-H(33)	k=43.090	j=130.177
C(16)-H(34)	k=46.440	j=140.297
C(16)-H(35)	k=-0.842	j=-2.543
C(16)-Rh(1)	k=191.718	j=-18.316
C(16)-P(2) k	=-2.468	j=-3.021
Rh(1)-P(2) k	=512.876	j=-78.949
Rh(1)-H(32)	k=1.647	j=-0.626
Rh(1)-H(33)	k=-10.730	j=4.076
Rh(1)-H(34)	k=1.646	j=-0.625
Rh(1)-H(35)	k=176.435	j=-67.020
P(2)-H(32) k	=0.366	j=1.783
P(2)-H(33) k	=-0.150	j=-0.729
P(2)-H(34) k	=3.212	j=15.633
P(2)-H(35) k	=-1.268	j=-6.170

CH4 ZSC-KT2/TZ2P//BLYP/TZ2P

Shielding Constants C(1): 198.22 ppm H(2): 31.27 ppm

Coupling Constants C(1)-H(2) k=44.932 j=135.740

TMS ZSC-KT2/TZ2P//BLYP/TZ2P Shielding Constants C(2): 190.53 ppm H(6): 31.33 ppm

TMS MP2/cc-pVTZ¹// BLYP/TZ2P

Shielding Constants C(2): 199.18 ppm

H(6): 31.53 ppm

TMS HF/cc-pVTZ¹// BLYP/TZ2P

Shielding Constants

C(2): 194.91 ppm H(6): 31.91 ppm

CH4 ZSO-KT2/TZ2P//BLYP/TZ2P

Shielding Constants C(1): 199.01 ppm H(2): 31.28 ppm

Coupling Constants

C(1)-H(2) k=44.919 j=135.703

TMS ZSO-KT2/TZ2P//BLYP/TZ2P Shielding Constants C(2): 191.44 ppm H(6): 31.34 ppm

TMS ZSO-SAOP/TZ2P//BLYP/TZ2P

Shielding Constants C(2): 186.45 ppm

H(6): 31.74 ppm

CH5⁺ ZSC-KT2/TZ2P//BLYP/TZ2P

Shielding Constants

C(1): 212.23 ppm H(2): 28.85 ppm H(3): 26.22 ppm H(4): 28.85 ppm H(5): 26.79 ppm H(6): 26.40 ppm

C(1)-H(2)	k=61.620	j=186.56
C(1)-H(3)	k=42.827	j=129.382
C(1)-H(4)	k=61.579	j=186.034
C(1)-H(5)	k=13.796	j=41.678
C(1)-H(6)	k=19.315	j=58.351

