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Supplementary Information Data  

The time-resolved ESR spectra and the details of the spectral simulations of 1, 2 and the parent 

-radical 3, the details of the eigenfield/exact-diagonalization hybrid method, the detail 

derivation of the unitary transformation matrixes and dynamic electron polarization density matrixes 

by the perturbation approach, the results of the molecular orbital calculations, are presented as the 

supplementary information. The dependence of the time-resolved ESR spectra of the SC state at 10 

ns on the electron transfer rate constant is also presented in this supplementary information. 
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I) Time-Resolved ESR spectra and the details of the spectral simulations of 1, 2 and the parent 

-radical 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1 Observed time-resolved ESR spectrum of 1 and details of the spectral simulation.
29, 30

 (a) 

Observed TRESR spectrum after laser excitation of the absorption band (= 505 nm) of the bodipy 

component A; (b) Simulation obtained by the superimposition of (c), (d) and (e) with the weight of 0.45, 

0.55, and 0.14, respectively;  (c) Simulation spectrum obtained by the selective population to the 

high-field spin-sublevels; (d) simulation spectrum obtained by the selective population to zero-field 

spin-sublevels (enhanced spin-orbit intersystem crossing mechanism); (e) simulation of polarized doublet 

state with g = 2.005.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2 Observed time-resolved ESR spectrum of 2 and details of the spectral simulation (Y. 

Takemoto and Y. Teki, ChemPhysChem, published online. DOI:10.1002/cphc.201000709). (a) Observed 

TRESR spectrum obtained at 0.3 s by the excitation of = 355 nm. (b) Simulation obtained by the 

superimposition of (c) and (d) with the weight of 0.78 : 0.22, respectively.  (b) Simulation spectrum 

obtained by the selective population to the high-field spin-sublevels (novel mechanism through ion-pair 

state); (c) simulation spectrum obtained by the selective population to zero-field spin-sublevels (enhanced 

spin-orbit intersystem crossing mechanism).  
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Figure S3  Observed time-resolvedESR spectrum of the parent -radical 3 and the spectral 

simulation.13 (a) Time-resolved ESR at 30 K in 2-MTHF glass matrix.  (b) Simulation. The 

simulation spectrum was obtained by the selective population to zero-field spin-sublevels 

(enhanced spin-orbit interystem crossing mechanism).                                                   
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II) Details of the eigenfield/exact-diagonalization hybrid method 

 

The eigenfield/exact-diagonalization hybrid method
48

 is a combination of the eigenfield 

method
47

 (exact calculation of the ESR resonance fields) and the numerical diagonalization of 

the spin-Hamiltonian. In this method, the resonance field BRes() for each transition of 

MsMs’ was directly calculated by solving the following eigenfield equation
47

: 

     ZCBZA R e s    ,                             (S1) 

where A and C are given by the following super-operators. 

     FEEFEEA               (S2) 

and 

     *GEEGC                            (S3) 

Here, E is a unit matrix and  is the given microwave frequency. The operators G and F 

are the field dependent and independent parts of the spin Hamiltonian, respectively. By 

solving the eigenfield equation (eq (S1)), the resonance fields (BRes) are obtained. The 

transition probabilities I () were evaluated by numerically diagonalization of the 

spin Hamiltonian matrix at each calculated resonance eigenfield. 
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III) Details of the Perturbation Approach 

We have treated the case of |Hex | < |Hf| << |Hz|. Thus, |Hf | and |Hex| were treated as perturbation 

terms. According to the conventional perturbation theory, the following equations have been 

derived. The energies (E1 - E6) and eigenfunctions (|1> - |6>) are given by eqs. (B1a) – (B1l) in 

the Appendix of the main text. The unitary transformation matrix (U
W

()) from the 

W basis representation to the  basis representation is obtained to the first order using eqs. (B1a) 

– (B1l). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this equation and the projection operator given in eq. (A4) in the Appendix of the main text,

QM

Ct )( 1
 
of eq.(5) is obtained to the first order on the  basis representation as 
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This equation shows that the first order term D0 ( –Dzz) of the fine-structure tensor, D
QM

 is not 

contribute to the density matrix, which express the DEP of the QM state under the “finite field”. 

Especially, it should be noted that the diagonal components of the density matrix (the populations of 
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the eigenstates of the QM state) is independent to the D
QM

. The de-coherence process leads to the 

density matrix QM

DCt )( 1 , which is given by eq. (12) in the main text as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Using eqs. (12), (A2) and (S4), the density matrix S

Ct )( 3 , on the high-field spin-eigenstates 

representation ( |Q3/2>, |Q1/2>, |Q-1/2>, |Q-3/2>, |D1/2>, and |D-1/2>) is obtained to the first order as 

S

Ct )( 3  
SWWQM

DC

WSW UUtUU    )()()( 2

11
 

This equation shows that the DEP generated on the QM states is mainly transferred to the MS = 

1/2 spin sublevels of the high-field wavefunctions of the SC states (|Q1/2> and |D1/2>), which 

leads to a non-Boltzmann population (DEP). Thus, the MS value is conserved during this process. 

The main off-diagonal terms are 18/)/71(2  WJ  and 18/)/71(2  WJ . However, these 

terms do not contribute to the time-resolved ESR spectrum of the SC states as the “steady states” 

after the de-coherence.  

In the SC states, the exchange interaction is much larger than other interactions. Here, we 

have treated the case of |HZ| > |Hf|, and Hf as a perturbation term for HZ. The mixing term VDQ 

has been also incorporated as the perturbation for Hex. According to the perturbation theory, the 

energies (E(Q3/2) - E(D-1/2)) and the eigenfunctions (|(Q3/2)> - |(D-1/2)>) are given by eqs. 

(B2a) – (B2l) in the Appendix of the main text. using eqs. (B1a) – (B1l). The unitary 

transformation matrix (U
S

()) from the  basis to the S basis is obtained to the first 
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order using eqs. (B1a) – (B1l): 

 

 

 

 

 

 

 

 

Using eqs. (S6) and (S7),  Ct )( 3  
is obtained to the first order on the  basis representation by 
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which is represented by eq. (15) on the basis representation shown in the main text as follows. 
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IV) Results of the ab-initio molecular orbital calculations 

 

(a) 
 
 

 

 

 

 

 

 

(b) 
 

 

 

Total Energy:  E = -2364.93328927 a.u. 

 

Figure S4 (a) -HOMO and (b) MO level diagram of the ground state of 1  
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(a) 

 

(b) 

 

          

Total Energy:  E = -2364.88064 a.u. 

 

Figure S5 (a) Spin density distribution and (b) molecular orbitals and energy levels of the  

quartet photo-excited state of 1. 

 

OV 

OV 

MO Diagram of BODIPY-An-OV (Quartet Excited State) 
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(a) 

 

(b) 

 
Total Energy:  E(UB3LYP) =  - 2364.87771  a.u. 

 

Figure S6 (a) Spin density distribution and (b) molecular orbitals and energy levels of the  

another photo-excited QM state of 1, which is constructed from the photo-excited 

triplet state of the BODIPY moiety and the spin-doublet radical moiety. This 

photo-excited state is higher in energy about 0.00293 a.u. (0.079 eV) than the quartet 

state detected by time-resolved ESR. 
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MO Diagram of Naphtalimide-An-Ver (Ground State)

α β

 

(a)  

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Energy:  E(UB3LYP) =  -2193.00289  a.u. 

 

Figure S7 (a) -HOMO and (b) MO level diagram of the ground state of 2
41
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 (a) 
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MO Diagram of Naphtalimide-An-Ver (Quartet State)

 

Total Energy:  E(UB3LYP) =  -2192.94981  a.u. 

Figure S8 (a) Spin density distribution and (b) molecular orbitals and energy levels of the  

quartet photo-excited state of 2.
41
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V) Dependence of the time-resolved ESR spectra of the SC state at 10 ns on the electron  

transfer rate constant 

Using the solution (26), QM 
= SC

 = 0 and the initial condition ((0)
QM

 = P(D) and (0)
SC

 = 0 

on the W basis representation), we simulated the dependence of the time-resolved ESR spectra 

of the SC state on kET. Figure S10 shows the dependence of the time-resolved ESR spectra of the 

SC state on the electron transfer rate constant. In this calculation the duration time was set to be 

10 ns. As shown in this Figure, the most similar one to those obtained by the polarization 

transfer after the de-coherence of the QM state shown in Figures 13(a)-(f) is Figure (j). However, 

the center region of the spectrum is different from those shown in Figures 13(a)-(f). Thus, only 

the incomplete dephasing was obtained at 10 ns. 

Figure S9 Dependence of the simulation spectra of the SC state on kET. The duration time was set to 

be 10 ns. D
SC

 = 0.0645 cm
-1

 and E
SC

 = 0.0030 cm
-1

 were used for the fine-structure parameter of the 

SC state. D
QM

, 2JW and 2JS values were fixed to be 0.022 cm
-1

, 0.05 MHz and 5000 GHz, 

respectively. (a) kET
 
= 1.0x10

17
 s

-1
, (b) kET

 
= 1.0x10

16
 s

-1
, (c) kET

 
= 1.0x10

15
 s

-1
, (d) kET

 
= 1.0x10

14
 s

-1
 

(e) kET
 
= 1.0x10

13
 s

-1
, (f) kET

 
= 1.0x10

12
 s

-1
, (g) kET

 
= 1.0x10

11
 s

-1
, (h) kET

 
= 1.0x10

10
 s

-1
, (i) kET

 
= 

1.0x10
9
 s

-1
 and (j) kET

  
= 1.0x10

8
 s

-1
, (k) kET

 
= 1.0x10

7
 s

-1
 and (l) kET

 
= 1.0x10

6
 s

-1 
respectively. 

 


