Electronic Supplementary Information (ESI)

Conformational analysis and UV/Vis spectroscopic properties of a rotaxanebased molecular machine in acetonitrile dilute solution: when simulations meet experiments.

Giordano Mancini,^a Costantino Zazza,^{a*} Massimiliano Aschi,^b and Nico Sanna^a

^a Consorzio per le Applicazioni del Supercalcolo Per Universita' e Ricerca (CASPUR), Via dei Tizii 6/b, 00185 Roma, Italy. E-mail: <u>costantino.zazza@caspur.it</u>

^b Dipartimento di Chimica, Ingegneria Chimica e Materiali, Università di L'Aquila, 67010, L'Aquila, Italy.

Supplementary informations	2
A. Topology files applied for the MD sampling in MeCN solution	2
B. Free energy minimum conformations in MeCN solution	3
C. Optimized geometries of the <i>ni/bam</i> complex at DFT/CPCM level	7

Supplementary informations:

A. Topology files applied for the MD sampling in MeCN solution

ESI-Figure 1: A pictorial view of the MD classical simulation box.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

Acetonitrile force field (Gromos-stile):

: Name nrexcl 3 CCN [atoms] type resnr residue atom cgnr nr charge mass typeB chargeB massB ; CCN -0.532 14.0067 ; 1 Ν 1 1 Ν С 2 1 CCN С 0.481 12.011 : 1 3 CH3 1 CCN С 1 0.051 15.035 : [bonds] aj funct c0 c1 ai 1 2 2 0.1150 100000. 2 0.1458 100000. 2 3 [angles] c0 ; ai aj ak funct 2 3 2 180.0 3000. 1 ; Include Position restraint file ;#ifdef POSRES ;#include "posre.itp" :#endif #ifdef POSRES_WATER ; Position restraint for each water oxygen [position_restraints] ; i funct fcx fcy fcz 1000 1000 1 1 1000 #endif Please note that this file can be also downloaded using the following URL: http://www.caspur.it/~kosta/ROTAXANE/FORCE_FIELD_ANION/acetonitrile.itp

Benzylic Amide Macrocycle (bam) force field (Gromos-stile):

this file can be viewed and downloaded using the following URL: http://www.caspur.it/~kosta/ROTAXANE/FORCE_FIELD_ANION/macrocycle.itp

Suco-[C₁₂ alkyl spacer]-*Ni* force field (Gromos-stile): this file can be viewed and downloaded using the following URL: *http://www.caspur.it/~kosta/ROTAXANE/FORCE_FIELD_ANION/shuttle-clos.itp*

Finally, the **Topol.top** file collecting the singular topology files is as follows:

#include "ffG43a1.itp"
#include "shuttle-clos.itp"
#include "macrocycle.itp"
#include "acetonitrile.itp"

[system] ; Name molecular shuttle

[molecules] ;Compound #mols KOS 1 ; synthetic thread MAC 1 ; bam macrocycle CCN 2468 ; CCN solvent molecules

B. Free energy minimum conformations in MeCN solution

Rotaxane, Elongated basin (see Figure 5 into the manuscript):

CRYST1	52.40	04 52.034	77.518 90.00 90.00 90.00 P 1	1
ΑΤΟΜ	1 C	KOS X 1	30.130 30.900 45.310 1.00 0.00	
ATOM	2 N	KOS X 1	30.400 32.170 46.120 1.00 0.00	
ATOM	3 C	KOS X 1	30.030 32.230 47.460 1.00 0.00	
ATOM	4 O	KOS X 1	29.560 31.380 47.960 1.00 0.00	
ATOM	5 C	KOS X 1	30.990 33.270 45.520 1.00 0.00	
ATOM	6 O	KOS X 1	31.200 33.310 44.450 1.00 0.00	
ATOM	7 C	KOS X 1	30.310 33.360 48.220 1.00 0.00	
ATOM	8 C	KOS X 1	29.760 33.460 49.490 1.00 0.00	
ATOM	9 C	KOS X 1	31.270 34.380 46.300 1.00 0.00	
ATOM	10 C	KOS X 1	31.800 35.560 45.780 1.00 0.00	
ATOM	11 C	KOS X 1	30.970 34.450 47.660 1.00 0.00	
ATOM	12 C	KOS X 1	31.190 35.570 48.450 1.00 0.00	
ATOM	13 C	KOS X 1	29.980 34.580 50.280 1.00 0.00	
ATOM	14 C	KOS X 1	30.710 35.640 49.750 1.00 0.00	
ATOM	15 H	KOS X 1	29.080 32.680 49.830 1.00 0.00	
ATOM	16 C	KOS X 1	29.460 34.720 51.560 1.00 0.00	
ATOM	17 H	KOS X 1	30.890 36.530 50.350 1.00 0.00	
ATOM	18 C	KOS X 1	32.080 36.690 46.530 1.00 0.00	
ATOM	19 C	KOS X 1	31.760 36.710 47.890 1.00 0.00	
ATOM	20 H	KOS X 1	32.000 35.570 44.710 1.00 0.00	
ATOM	21 C	KOS X 1	32.690 37.810 45.980 1.00 0.00	
ATOM	22 H	KOS X 1	31.720 37.660 48.420 1.00 0.00	
ATOM	23 C	KOS X 1	30.040 31.250 43.820 1.00 0.00	
ATOM	24 C	KOS X 1	29.650 29.950 43.120 1.00 0.00	
ATOM	25 C	KOS X 1	29.380 30.300 41.660 1.00 0.00	
ATOM	26 C	KOS X 1	29.110 29.050 40.830 1.00 0.00	
ATOM	27 C	KOS X 1	28.740 29.440 39.390 1.00 0.00	
ATOM	28 C	KOS X 1	28.190 28.190 38.710 1.00 0.00	
ATOM	29 C	KOS X 1	27.490 28.380 37.370 1.00 0.00	
ATOM	30 C	KOS X 1	27.020 27.040 36.790 1.00 0.00	
ATOM	31 C	KOS X 1	26.060 27.120 35.610 1.00 0.00	
ATOM	32 C	KOS X 1	25.600 25.750 35.120 1.00 0.00	
ATOM	33 C	KOS X 1	24.820 25.870 33.810 1.00 0.00	
ATOM	34 N	KOS X 1	24.580 24.600 33.090 1.00 0.00	

Supplementary Material (ESI) for PCCP

This journal is © the Owner S	Societies 2011
-------------------------------	----------------

ATOM	35 H KC	SX 1	25.410 24.050 3	32.960 1.00 0.00
ATOM	36 C KC	SX 1	23.440 24.190 3	32.560 1.00 0.00
ATOM	37 O KC	OSX 1	22.390 24.820 3	32.640 1.00 0.00
ATOM	38 C KC	SX 1	23.440 22.810 3	31.900 1.00 0.00
ATOM	39 C KC	SX 1	23.190 21.730 3	32.950 1.00 0.00
ATOM	40 C KC	SX 1	23.180 20.380 3	32.230 1.00 0.00
ATOM	41 O KC	OSX 1	24.170 19.950 3	31.630 1.00 0.00
ATOM	42 N KC	SX 1	21.950 19.900 3	32.110 1.00 0.00
ATOM	43 H KC	SX 1	21.230 20.450 3	32.530 1.00 0.00
ATOM	44 C KC	SX 1	21.560 18.670 3	31.290 1.00 0.00
ATOM	45 C KC	OSX 1	21.770 18.870 2	29.790 1.00 0.00
ATOM	46 C KC	OSX 1	20.970 20.060 2	29.270 1.00 0.00
ATOM	47 C KC	OSX 1	21.590 21.260 2	28.940 1.00 0.00
ATOM	48 C KC	SX 1	20.880 22.450 2	28.870 1.00 0.00
ATOM	49 C KC	SX 1	19.510 22.440 2	29.110 1.00 0.00
ATOM	50 C KC	OSX 1	18.860 21.250 2	29.410 1.00 0.00
ATOM	51 C KC	OSX 1	19.590 20.060 2	29.440 1.00 0.00
ATOM	52 H KC	OSX 1	22.650 21.250 2	28.680 1.00 0.00
ATOM	53 H KC	OSX 1	21.400 23.390 2	28.690 1.00 0.00
ATOM	54 H KC	SX 1	18.940 23.370 2	29.050 1.00 0.00
ATOM	55 H KC	OSX 1	17.810 21.250 2	29.680 1.00 0.00
ATOM	56 H KC	OSX 1	19.070 19.120 2	29.630 1.00 0.00
ATOM	57 C KC	OSX 1	21.480 17.620 2	28.940 1.00 0.00
ATOM	58 C KC	SX 1	20.980 17.760 2	27.650 1.00 0.00
ATOM	59 C KC	OSX 1	20.520 16.640 2	26.970 1.00 0.00
ATOM	60 C KC	OSX 1	20.600 15.380 2	27.550 1.00 0.00
ATOM	61 C KC	SX 1	21.200 15.230 2	28.800 1.00 0.00
ATOM	62 C KC	OSX 1	21.660 16.350 2	29.480 1.00 0.00
ATOM	63 H KC	SX 1	20.990 18.720 2	27.150 1.00 0.00
ATOM	64 H KC	SX 1	20.130 16.750 2	25.950 1.00 0.00
ATOM	65 H KC	OSX 1	20.220 14.510 2	27.030 1.00 0.00
ATOM	66 H KC	SX 1	21.360 14.230 2	29.210 1.00 0.00
ATOM	67 H KC	SX 1	22.330 16.220 3	30.330 1.00 0.00
ATOM	68 C1 M	ACX 2	28.520 35.600	44.000 1.00 0.00
ATOM	69 N1 M	ACX 2	29.370 34.910	43.030 1.00 0.00
ATOM	70 H1 M	ACX 2	30.140 34.400	43.430 1.00 0.00
ATOM	71 C2 M	ACX 2	29.200 34.880	41.710 1.00 0.00
ATOM	72 O1 M	ACX 2	28.230 35.410	41.170 1.00 0.00
ATOM	73 C3 M	ACX 2	30.300 34.130	40.940 1.00 0.00
ATOM	74 C4 M	ACX 2	31.370 33.620	41.660 1.00 0.00
ATOM	75 C5 M	ACX 2	30.160 33.690	39.630 1.00 0.00

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

		This journal is © the Owner Societies 2
ATOM	76 C6 MAC X 2	31.130 32.930 38.990 1.00 0.00
ATOM	77 C7 MAC X 2	32.190 32.450 39.760 1.00 0.00
ATOM	78 C8 MAC X 2	32.380 32.860 41.080 1.00 0.00
ATOM	79 C9 MAC X 2	33.500 32.270 41.940 1.00 0.00
ATOM	80 O2 MAC X 2	34.360 31.570 41.420 1.00 0.00
ATOM	81 N2 MAC X 2	33.520 32.540 43.240 1.00 0.00
ATOM	82 H2 MAC X 2	32.770 33.060 43.660 1.00 0.00
ATOM	83 C10 MAC X 2	34.590 32.100 44.150 1.00 0.00
ATOM	84 C11 MAC X 2	34.160 31.400 45.440 1.00 0.00
ATOM	85 C12 MAC X 2	34.060 32.170 46.590 1.00 0.00
ATOM	86 C13 MAC X 2	33.710 31.560 47.790 1.00 0.00
ATOM	87 C14 MAC X 2	33.740 30.080 45.430 1.00 0.00
ATOM	88 C15 MAC X 2	33.390 29.460 46.620 1.00 0.00
ATOM	89 C16 MAC X 2	33.290 30.230 47.780 1.00 0.00
ATOM	90 C17 MAC X 2	32.880 29.600 49.110 1.00 0.00
ATOM	91 N3 MAC X 2	31.460 29.230 49.090 1.00 0.00
ATOM	92 H3 MAC X 2	30.830 29.920 48.730 1.00 0.00
ATOM	93 C18 MAC X 2	31.000 28.060 49.520 1.00 0.00
ATOM	94 O3 MAC X 2	31.750 27.190 49.970 1.00 0.00
ATOM	95 C19 MAC X 2	29.490 27.840 49.380 1.00 0.00
ATOM	96 C20 MAC X 2	28.640 28.930 49.330 1.00 0.00
ATOM	97 C21 MAC X 2	28.930 26.570 49.490 1.00 0.00
ATOM	98 C22 MAC X 2	27.560 26.370 49.340 1.00 0.00
ATOM	99 C23 MAC X 2	26.740 27.490 49.260 1.00 0.00
ATOM	100 C24 MAC X 2	27.270 28.770 49.150 1.00 0.00
ATOM	101 C25 MAC X 2	26.340 29.970 48.970 1.00 0.00
ATOM	102 O4 MAC X 2	25.150 29.900 49.280 1.00 0.00
ATOM	103 N4 MAC X 2	26.870 31.060 48.430 1.00 0.00
ATOM	104 H4 MAC X 2	27.860 31.150 48.280 1.00 0.00
ATOM	105 C26 MAC X 2	26.060 32.220 48.050 1.00 0.00
ATOM	106 C27 MAC X 2	26.730 33.090 46.980 1.00 0.00
ATOM	107 C28 MAC X 2	26.740 32.660 45.660 1.00 0.00
ATOM	108 C29 MAC X 2	27.390 33.420 44.700 1.00 0.00
ATOM	109 C30 MAC X 2	27.840 34.700 45.030 1.00 0.00
ATOM	110 C31 MAC X 2	27.830 35.130 46.350 1.00 0.00
ATOM	111 C32 MAC X 2	27.180 34.370 47.310 1.00 0.00
END		

Please note that this file can be also downloaded using the following URL: http://www.caspur.it/~kosta/ROTAXANE/PDBS/elongated_basin.pdb

Rotaxane, Folded basin (see Figure 5 into the manuscript):

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

	This	iournal	is © the	Owner	Societies	20
--	------	---------	----------	-------	-----------	----

CRYST1	52.4	04 52.03	34	77.518 90.00 90.00 90.00 P 1 1
ATOM	1 C	KOS X	1	24.750 24.960 36.310 1.00 0.00
ATOM	2 N	KOS X	1	25.840 24.100 35.680 1.00 0.00
ATOM	3 C	KOS X	1	25.790 23.800 34.320 1.00 0.00
ATOM	4 O	KOS X	1	24.890 23.870 33.710 1.00 0.00
ATOM	5 C	KOS X	1	27.010 23.930 36.410 1.00 0.00
ATOM	6 O	KOS X	1	27.170 24.310 37.420 1.00 0.00
ATOM	7 C	KOS X	1	26.940 23.370 33.670 1.00 0.00
ATOM	8 C	KOS X	1	26.900 23.340 32.280 1.00 0.00
ATOM	9 C	KOS X	1	28.110 23.410 35.740 1.00 0.00
ATOM	10 C	KOS X	1	29.250 22.950 36.400 1.00 0.00
ATOM	11 C	KOS X	1	28.110 23.150 34.380 1.00 0.00
ATOM	12 C	KOS X	1	29.200 22.640 33.690 1.00 0.00
ATOM	13 C	KOS X	1	28.030 22.900 31.590 1.00 0.00
ATOM	14 C	KOS X	1	29.150 22.500 32.310 1.00 0.00
ATOM	15 H	KOS X	1	26.040 23.720 31.730 1.00 0.00
ATOM	16 C	KOS X	1	28.170 23.170 30.230 1.00 0.00
ATOM	17 H	KOS X	1	29.960 21.980 31.790 1.00 0.00
ATOM	18 C	KOS X	1	30.350 22.380 35.770 1.00 0.00
ATOM	19 C	KOS X	1	30.340 22.240 34.390 1.00 0.00
ATOM	20 H	KOS X	1	29.290 23.110 37.480 1.00 0.00
ATOM	21 C	KOS X	1	31.530 22.120 36.460 1.00 0.00
ATOM	22 H	KOS X	1	31.230 21.930 33.850 1.00 0.00
ATOM	23 C	KOS X	1	23.470 24.160 36.580 1.00 0.00
ATOM	24 C	KOS X	1	22.350 25.060 37.100 1.00 0.00
ATOM	25 C	KOS X	1	22.610 25.570 38.510 1.00 0.00
ATOM	26 C	KOS X	1	21.500 26.480 39.030 1.00 0.00
ATOM	27 C	KOS X	1	21.340 27.810 38.290 1.00 0.00
ATOM	28 C	KOS X	1	22.490 28.790 38.540 1.00 0.00
ATOM	29 C	KOS X	1	22.240 30.090 37.770 1.00 0.00
ATOM	30 C	KOS X	1	23.080 31.290 38.190 1.00 0.00
ATOM	31 C	KOS X	1	24.580 31.090 37.940 1.00 0.00
ATOM	32 C	KOS X	1	25.390 32.340 38.300 1.00 0.00
ATOM	33 C	KOS X	1	26.890 32.060 38.190 1.00 0.00
ATOM	34 N	KOS X	1	27.430 31.130 39.190 1.00 0.00
ATOM	35 H	KOS X	1	26.840 30.350 39.410 1.00 0.00
ATOM	36 C	KOS X	1	28.700 31.090 39.570 1.00 0.00
ATOM	37 O	KOS X	1	29.590 31.600 38.890 1.00 0.00
ΑΤΟΜ	38 C	KOS X	1	29.100 30.310 40.830 1.00 0.00
ATOM	39 C	KOS X	1	29.230 28.800 40.650 1.00 0.00
ATOM	40 C	KOS X	1	29.070 27.990 41.940 1.00 0.00

Supplementary Material (ESI) for PCCP

This journal is © the O	Wher Societies 2011
-------------------------	---------------------

ATOM	41 O KOS	X 1	28.870 28.540 43.030 1.00 0.00
ATOM	42 N KOS	X 1	28.950 26.670 41.830 1.00 0.00
ATOM	43 H KOS	X 1	29.260 26.270 40.970 1.00 0.00
ATOM	44 C KOS	X 1	28.670 25.770 43.040 1.00 0.00
ATOM	45 C KOS	X 1	28.520 24.290 42.690 1.00 0.00
ATOM	46 C KOS	X 1	28.110 23.480 43.920 1.00 0.00
ATOM	47 C KOS	X 1	27.150 22.510 43.720 1.00 0.00
ATOM	48 C KOS	X 1	26.600 21.790 44.780 1.00 0.00
ATOM	49 C KOS	X 1	27.080 22.010 46.070 1.00 0.00
ATOM	50 C KOS	X 1	28.100 22.930 46.270 1.00 0.00
ATOM	51 C KOS	X 1	28.610 23.670 45.210 1.00 0.00
ATOM	52 H KOS	X 1	26.890 22.240 42.700 1.00 0.00
ATOM	53 H KOS	X 1	25.850 21.020 44.590 1.00 0.00
ATOM	54 H KOS	X 1	26.620 21.490 46.910 1.00 0.00
ATOM	55 H KOS	X 1	28.480 23.070 47.280 1.00 0.00
ATOM	56 H KOS	X 1	29.400 24.400 45.400 1.00 0.00
ATOM	57 C KOS	X 1	29.780 23.660 42.100 1.00 0.00
ATOM	58 C KOS	X 1	29.750 23.010 40.870 1.00 0.00
ATOM	59 C KOS	X 1	30.730 22.070 40.560 1.00 0.00
ATOM	60 C KOS	X 1	31.780 21.860 41.450 1.00 0.00
ATOM	61 C KOS	X 1	31.880 22.590 42.630 1.00 0.00
ATOM	62 C KOS	X 1	30.880 23.500 42.940 1.00 0.00
ATOM	63 H KOS	X 1	28.990 23.290 40.150 1.00 0.00
ATOM	64 H KOS	X 1	30.670 21.500 39.640 1.00 0.00
ATOM	65 H KOS	X 1	32.510 21.070 41.240 1.00 0.00
ATOM	66 H KOS	X 1	32.670 22.370 43.340 1.00 0.00
ATOM	67 H KOS	X 1	30.970 24.120 43.830 1.00 0.00
ATOM	68 C1 MAC	X 2	26.860 21.020 38.880 1.00 0.00
ATOM	69 N1 MAC	X 2	26.510 22.390 39.280 1.00 0.00
ATOM	70 H1 MAC	X 2	26.900 23.120 38.730 1.00 0.00
ATOM	71 C2 MAC	X 2	25.700 22.640 40.310 1.00 0.00
ATOM	72 O1 MAC	X 2	25.160 21.750 40.960 1.00 0.00
ATOM	73 C3 MAC	X 2	25.460 24.120 40.640 1.00 0.00
ATOM	74 C4 MAC	X 2	25.960 25.160 39.880 1.00 0.00
ATOM	75 C5 MAC	X 2	24.630 24.420 41.720 1.00 0.00
ATOM	76 C6 MAC	X 2	24.360 25.730 42.080 1.00 0.00
ATOM	77 C7 MAC	X 2	24.880 26.750 41.290 1.00 0.00
ATOM	78 C8 MAC	X 2	25.710 26.490 40.210 1.00 0.00
ATOM	79 C9 MAC	X 2	26.220 27.650 39.340 1.00 0.00
ATOM	80 O2 MAC	X 2	26.180 28.810 39.740 1.00 0.00
АТОМ	81 N2 MAC	X 2	26.740 27.320 38.170 1.00 0.00

Supplementary Material (ESI) for PCCP

This jou	nal is © the Owner Societies 2011
----------	-----------------------------------

ATOM	82 H2 MAC X 2	26.910 26.360 37.950 1.00 0.00
ATOM	83 C10 MAC X 2	27.140 28.260 37.110 1.00 0.00
ATOM	84 C11 MAC X 2	26.480 27.950 35.760 1.00 0.00
ATOM	85 C12 MAC X 2	27.140 27.220 34.790 1.00 0.00
ATOM	86 C13 MAC X 2	26.510 26.970 33.570 1.00 0.00
ATOM	87 C14 MAC X 2	25.160 28.350 35.580 1.00 0.00
ATOM	88 C15 MAC X 2	24.530 28.110 34.360 1.00 0.00
ATOM	89 C16 MAC X 2	25.200 27.370 33.390 1.00 0.00
ATOM	90 C17 MAC X 2	24.480 27.050 32.080 1.00 0.00
ATOM	91 N3 MAC X 2	23.640 25.870 32.310 1.00 0.00
ATOM	92 H3 MAC X 2	24.080 25.120 32.810 1.00 0.00
ATOM	93 C18 MAC X 2	22.390 25.760 31.880 1.00 0.00
ATOM	94 O3 MAC X 2	21.790 26.680 31.320 1.00 0.00
ATOM	95 C19 MAC X 2	21.710 24.410 32.140 1.00 0.00
ATOM	96 C20 MAC X 2	22.490 23.260 32.230 1.00 0.00
ATOM	97 C21 MAC X 2	20.340 24.300 32.280 1.00 0.00
ATOM	98 C22 MAC X 2	19.740 23.080 32.600 1.00 0.00
ATOM	99 C23 MAC X 2	20.540 21.950 32.690 1.00 0.00
ATOM	100 C24 MAC X 2	21.920 22.030 32.540 1.00 0.00
ATOM	101 C25 MAC X 2	22.820 20.790 32.630 1.00 0.00
ATOM	102 O4 MAC X 2	22.410 19.690 32.270 1.00 0.00
ATOM	103 N4 MAC X 2	24.050 20.960 33.090 1.00 0.00
ATOM	104 H4 MAC X 2	24.450 21.880 33.170 1.00 0.00
ATOM	105 C26 MAC X 2	24.920 19.850 33.520 1.00 0.00
ATOM	106 C27 MAC X 2	25.430 20.110 34.940 1.00 0.00
ATOM	107 C28 MAC X 2	24.600 20.760 35.840 1.00 0.00
ATOM	108 C29 MAC X 2	25.080 21.070 37.110 1.00 0.00
ATOM	109 C30 MAC X 2	26.360 20.680 37.480 1.00 0.00
ATOM	110 C31 MAC X 2	27.180 20.020 36.580 1.00 0.00
ATOM	111 C32 MAC X 2	26.710 19.710 35.310 1.00 0.00
END		

Please note that this file can be also downloaded using the following URL: http://www.caspur.it/~kosta/ROTAXANE/PDBS/folded_basin.pdb

C. Optimized geometries of the *nī/bam* complex at DFT/CPCM level

Molecular geometry of the *ni-/bam* supramolecular complex at CPCM/UPBE0 level of theory:

6	-0.682423	1.354551	3.491855
6	-1.390614	0.155813	3.590114
6	-0.678945	-1.048975	3.673145
6	0.710879	-1.047169	3.699348
6	1.422385	0.157918	3.629329
	6 6 6 6	6 -0.682423 6 -1.390614 6 -0.678945 6 0.710879 6 1.422385	6-0.6824231.3545516-1.3906140.1558136-0.678945-1.04897560.710879-1.04716961.4223850.157918

6	6	0.716218 1.356609 3.517096
7	6	2.939238 0.131466 3.663569
8	7	3.469318 -0.549985 2.498115
9	6	4.237210 -1.651609 2.582934
10	8	4.576828 -2.174298 3.669778
11	6	-2.907508 0.130452 3.564918
12	7	-3.386657 -0.643389 2.435530
13	6	-4.290401 -1.631976 2.556772
14	8	-4.783661 -1.997934 3.648384
15	6	-4.660221 -2.311087 1.270201
10	6	-5.272127 -3.505217 1.320900
10	6	-5.575792 -4.259609 0.156505
10	6	-0.204092 -0.070272 -1.090147
20	6	-4 391607 -1 729043 0 034942
21	6	-4.254756 -1.856015 -2.484683
22	7	-3.351026 -0.861816 -2.439501
23	6	-2.865968 -0.175986 -3.621673
24	6	-1.351111 -0.108431 -3.615829
25	6	-0.596122 -1.284179 -3.727384
26	6	0.793216 -1.231139 -3.728662
27	6	1.458614 -0.002278 -3.619172
28	6	0.707725 1.166921 -3.493819
29	6	-0.689716 1.113871 -3.489519
30	6	2.975810 0.030538 -3.622983
31	7	3.505567 -0.607727 -2.433425
32	6	4.291617 -1.699115 -2.477139
33	6	4.716287 -2.262466 -1.148690
34	6	5.580516 -3.359634 -1.128881
35	6	5.998709 -3.893973 0.090511
27	6	5.500041 -5.550552 1.291760
38	6	4.050155 -2.242002 1.277114
39	8	-4 733978 -2 316051 -3 546406
40	8	4 650752 -2 247426 -3 544848
41	8	-2.079537 0.138275 -0.028768
42	6	-1.101196 0.936641 -0.038798
43	7	0.183224 0.425689 -0.011621
44	6	1.331002 1.199829 -0.010229
45	6	1.177669 2.623962 -0.041031
46	6	-0.120133 3.186973 -0.078312
47	6	-1.265216 2.357965 -0.078301
48	6	-0.277036 4.606217 -0.116509
49	6	-1.590947 5.134492 -0.155640
50	6	-2./19960 4.3104/6 -0.15/289
51	0	-2.333834 2.924071 -0.110430
52 52	6	0.000004 0.410707 -0.112200
53	6	2.109007 4.052050 -0.075215
55	8	2.66120 0.641896 0.014709
56	6	0.302894 -1.026384 0.006076
57	1	-3.411643 2.257630 -0.116110
58	1	3.292736 3.001502 -0.009463
59	6	-4.102045
60	6	3.389651 5.735354 -0.070783
61	1	-1.716185 6.215938 -0.186049
62	1	0.775194 6.493478 -0.141039
63	1	-1.109405 -2.238960 -3.817873
64	1	1.377542 -2.144193 -3.816633
65	1	-5.464926 -4.183412 -2.028992
66	1	-6.053553 -5.213174 0.178385
67	1	3.3/1146 -0.510215 -4.490832
68	1	-3.229048 -0.722481 -4.500990
09 70	1	-2.490300 -3.990078 Z.293414 2.202446 4.072429 2.675225
70	1	3.3∠∠440 I.U/3I38 -3.0/3335 _2 900320 _0 50//322 _1 562762
11	1	-2.300320 -0.334432 -1.303703

or PCCP eties 2011

			Supplement	tary Material (ESI) fo
70		0.044400	This journal is	s © the Owner Socie
72	1	3.244460	-0.160406	-1.5553/1
73	1	1.259827	-1.983157	3.773449
74	1	5.908113	-3.772593	-2.076671
75	1	-1.227714	-1.986705	3.726947
76	1	-3.989748	-0.726493	-0.006009
77	1	-3.272988	0.846310	-3.660345
78	1	3.578322	-0.899037	0.041862
79	1	-1.267055	2.029380	-3.380802
80	1	-2.917967	-0.460364	1.546805
81	1	6.671250	-4.745209	0.104880
82	1	1.213709	2.124199	-3.389961
83	1	-3.302699	-0.335932	4.475992
84	1	3.220138	-0.124281	1.606836
85	1	3.294816	-0.407860	4.549351
86	1	5.871016	-3.731120	2.253149
87	1	-3.288878	1.161323	3.513585
88	1	3.325220	1.160924	3.706236
89	1	1.258526	2.296484	3.441032
90	1	-1.224089	2.292364	3.390280
91	1	1.360505	-1.275495	0.043592
92	1	-0.208131	-1.425671	0.883003
93	1	-0.148886	-1.443449	-0.895559
94	1	3,116306	6.794196	-0.100168
95	1	3,998339	5.570783	0.825840
96	1	4.030794	5.530224	-0.935865
97	1	-4.065787	5,998153	-0.228276
98	1	-4 653908	4 565134	-1 084561
99	1	-4 689527	4 610952	0 676789
00	•	7.000021	1.010002	0.010100

Molecular geometry of the *ni-/bam* supramolecular complex at CPCM/UPW91 level of theory:

1	6	-0.692684	1.342721	3.559561
2	6	-1.404355	0.132103	3.620430
3	6	-0.686701	-1.081696	3.677179
4	6	0.711889	-1.078870	3.705252
5	6	1.426672	0.136674	3.666665
6	6	0.714188	1.345395	3.587319
7	6	2.951497	0.111224	3.696382
8	7	3.482624	-0.568908	2.517114
9	6	4.245739	-1.690277	2.594379
10	8	4.579323	-2.231001	3.688334
11	6	-2.928651	0.106428	3.589532
12	7	-3.407565	-0.663636	2.444139
13	6	-4.311594	-1.670789	2.557661
14	8	-4.802076	-2.055748	3.657934
15	6	-4.676175	-2.340947	1.256101
16	6	-5.280803	-3.609930	1.294110
17	6	-5.580917	-4.278727	0.097241
18	6	-5.264116	-3.694252	-1.138832
19	6	-4.659350	-2.425508	-1.180106
20	6	-4.411711	-1.739957	0.017495
21	6	-4.277247	-1.846738	-2.520142
22	7	-3.370489	-0.837898	-2.463317
23	6	-2.880016	-0.135843	-3.646880
24	6	-1.357353	-0.070158	-3.641183
25	6	-0.600809	-1.258022	-3.731451
26	6	0.797420	-1.209494	-3.734874
27	6	1.471365	0.027265	-3.649083
28	6	0.718851	1.209653	-3.547264
29	6	-0.686906	1.161041	-3.540501
30	6	2.996645	0.054313	-3.652929
31	7	3.529231	-0.594436	-2.457005
32	6	4.311638	-1.704182	-2.505253
33	6	4.730216	-2.274352	-1.169495
34	6	5.591918	-3.385972	-1.153367
35	6	6.001646	-3.936140	0.071723

This journal is	© the Owner Societies 2011	
 ~ ~ ~ ~ ~ ~ ~	4 000004	

36	6	5.560565 -3.380688 1.283031
37	6	4.695095 -2.272562 1.274978
38	6 9	4.282889 -1.736901 0.044500
40	8	4 672128 -2 253948 -3 586014
41	8	-2.095483 0.139873 -0.028446
42	6	-1.108137 0.947169 -0.030497
43	7	0.188339 0.429550 -0.008277
44	6	1.347897 1.211977 -0.002686
45	6	1.190082 2.645466 -0.025410
46	6	
47 78	6	-1.209035 2.378505 -0.058047
40	6	-1.595119 5.173878 -0.116728
50	6	-2.730768 4.345134 -0.119748
51	6	-2.563502 2.950102 -0.088944
52	6	0.898785 5.450427 -0.081614
53	6	2.187073 4.888446 -0.050779
54	6	2.327410 3.490007 -0.022716
55 56	8	2.494922 0.649519 0.019633
57	1	-3 426573 2 279003 -0 090917
58	1	3.315994 3.024774 0.000620
59	6	-4.120039 4.942866 -0.154421
60	6	3.414238 5.773825 -0.050729
61	1	-1.721056 6.262094 -0.139981
62	1	0.784900 6.539910 -0.104627
63 64	1	-1.120507 -2.218707 -3.802700
65	1	-5 471573 -4 198318 -2 084704
66	1	-6.053202 -5.262624 0.128105
67	1	3.396626 -0.493904 -4.523922
68	1	-3.250318 -0.683295 -4.532492
69	1	-5.502134 -4.047209 2.269597
70 71	1	3.349504 1.103027 -3.700023
72	1	3 260479 _0 140481 _1 565820
73	1	1.265383 -2.021622 3.756240
74	1	5.921456 -3.795482 -2.109997
75	1	-1.237992 -2.026892 3.707848
76	1	-4.019506 -0.725053 -0.014640
//	1	-3.289056 0.894075 -3.676340
70 70	1	3.569055 -0.699675 0.034405
80	1	-2.935428 -0.470549 1.549102
81	1	6.670494 -4.798938 0.082587
82	1	1.231890 2.173037 -3.465136
83	1	-3.334326 -0.375583 4.497529
84	1	3.238811 -0.134955 1.618387
85 86	1	3.316013 -0.442667 4.579481
87	1	-3 312411 1 144640 3 543954
88	1	3.340202 1.147276 3.743350
89	1	1.259419 2.293376 3.540154
90	1	-1.239304 2.288172 3.485957
91	1	1.374019 -1.279659 0.029728
92	1	-0.200964 -1.439326 0.883381
93 04	1	-0.151950 -1.440359 -0.900903 3 140002 6 830602 -0.074304
95	1	4.032511 5.603913 0.846829
96	1	4.056096 5.570744 -0.924518
97	1	-4.084179 6.042674 -0.174845
98	1	-4.679979 4.606844 -1.043437
99	1	-4.709772

Supplementary Material (ESI) for PCCP This journal is $\textcircled{\mbox{\scriptsize C}}$ the Owner Societies 2011