Supporting Information

Insights on the Mechanism of Proton Transfer Reactions in Amino Acids.

Fernanda Duarte, Esteban Vöhringer-Martinez, and Alejandro Toro-Labbé

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.

Table of Contents

Figure S1. Isodensity surface at 0.004 e/A^3 for the neutral(left) and zwitterion(right) structure for alanine and phenylalanine, calculated from optimized structures at the B3LYP/6-31G(d,p) level of theory.

Figure S2. Bond distances (in angstroms) between donor and acceptor atoms for the water– assisted proton transfer R4.

1. Isodensity surface

Figure 1 shows the isodensity surface at 0.004 e/A^3 for the for the neutral(left) and zwitterion(right) form for alanine and phenylalanine, calculated from optimized structures at the B3LYP/6-31G(d,p) level of theory.

Figure 1:

Supplementary Material (ESI) for PCCP This journal is $\textcircled{\mbox{\scriptsize C}}$ the Owner Societies 2011

2. Structural Rearrangement

Figure 2 shows the evolution along ξ of the distances between the donor and acceptor atoms.

Figure 2: