From CO₂ to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric species

Mahboubeh Poor Kalhor,^a Henry Chermette,^{*a} Stéphane Chambrey^b and Danielle Ballivet-Tkatchenko^{*b}

^a Université de Lyon, Université Lyon 1 et CNRS, Sciences Analytiques-Laboratoire de Chimie Physique Théorique, 43 bd du 11 novembre 1918, 69622 Villeurbanne cedex, France

^b Université de Bourgogne et CNRS, Institut de Chimie Moléculaire, 9, av. A. Savary, 21000 Dijon, France

Table S1 Relevant geometrical parameters for 7 and 8

- Table S2 Relevant geometrical parameters for 11
- Fig. S1 Energy profile of the reaction between CO_2 and 1, and relevant charges (in italic).
- Fig. S2 Energy profile of the reaction between CO_2 and 2, and relevant distances (Å) and charges (italic).
- Fig. S3 Changes in energy and shape of HOMOs and LUMOs of CO_2 and 2 to 9.
- Fig. S4 Energy profile for the reaction of CO_2 with 3 to 9.
- Fig. S5 Energy profile for the reaction of CO_2 with 4 to 9.
- **Fig. S6** Energy profile for the reaction of CO_2 with **5** to **9**.
- **Fig. S7** Energy profile for the reaction of CO₂ with 6 to 9.
- Fig. S8 Energy diagrams calculated with PW91 functional for the reaction of CO₂ with 1 to 11.
- Fig. S9 Gibbs energy diagrams for the reaction of CO_2 with 1 to 11 at 298 K.
- Fig. S10 Gibbs energy diagrams for the reaction of CO₂ with 1 to 11 at 423 K.
- **Fig. S11** Energy profile of the reaction between CO_2 and **9**.

Table S1 Relevant geometrical parameters (Å, deg) for 7 and 8

	D (this	FT study)	X-Ray ^a	B3LY	Р ^ь * там	$MP2^{b}$		DFT (this study)		X-Ray ^a
	7	8	8	8		8 8		7	8	8
Sn(1)-O(1)	2.146	2.089	2.038	2.034	2.027		O(1)-Sn(1)-C(2)	116.3	115.8	109.4
Sn(1)-O(1*)	2.221	2.313	2.324	2.262	2.236		O(1*)-Sn(1)-O(2)	154.9	156.3	161.7
Sn(1)-O(2)	2.067	2.064	2.038	2.002	1.999		O(1*)-Sn(1)-C(1)	90.8	89.1	86.6
Sn(1)-C(1)	2.183	2.183	2.121	2.140	2.123		O(1*)-Sn(1)-C(2)	90.8	89.1	88.3
Sn(1)-C(2)	2.183	2.183	2.13	2.140	2.126		O(2)-Sn(1)-C(1)	100.7	101.8	96.4
O(1)-C(3)	1.459	1.434	1.445				O(2)-Sn(1)-C(2)	100.7	101.8	101.8
O(2)-C(4)	1.416	1.416	1.300				C(1)-Sn(1)-C(2)	123.8	123.4	135.1
O(1)-Sn(1)-O(1*)	68.7	68.6	68.9				Sn(1)-O(1)-Sn(1*)	114.0	111.3	111.1
O(1)-Sn(1)-O(2)	86.1	87.7	93.2				Sn(1)-O(1)-C(3)	123.9	123.7	122.8
O(1)-Sn(1)-C(1)	116.3	115.8	110.0							

^a J.-C. Choi, T. Sakakura and T. Sako, *J. Am. Chem. Soc.*, 1999, **121**, 3793-3794. ^b K. Wakamatsu, A. Orita and J. Otera, *Organometallics*, 2008, **27**, 1092-1097.

Table S2 Relevant geometrical parameters (Å, deg) for 11

	DFT	X-Ray ^a		DFT	X-Ray ^a
Sn(1)-O(1)	2.099	2.086	O(1)Sn(1)C(1)	109.6	102.1
Sn(1)-O(1*)	2.341	2.223	O(1)Sn(1)C(2)	108.2	104.6
Sn(1)-O(2)	2.173	2.192	O(1)Sn*(1)O(2*)	156.9	155.9
Sn(1)-C(1)	2.166	2.102	O(1)Sn*(1)C*(1)	89.4	91.8
Sn(1)-C(2)	2.162	2.11	O(1)Sn*(1)C*(2)	87.8	91.6
O(1)-C(3)	1.434	1.413	O(2)Sn(1)C(1)	99.8	94
O(2)-C(4)	1.306	1.292	O(2)Sn(1)C(2)	99.4	93.8
O(3)-C(4)	1.246	1.201	C(1)Sn(1)C(2)	138.2	152.8
O(4)-C(4)	1.359	1.353	Sn(1)O(1)Sn(1*)	109.6	108.2
O(4)-C(5)	1.444	1.426	Sn(1)O(1)C(3)	125.4	124.3
O(1)Sn(1)O(1*)	70	71.8	O(2)C(4)O(3)	124.7	125.9
O(1)Sn(1)O(2)	86.9	84.1	O(2)C(4)O(4)	112.4	115.9

^a J.-C. Choi, T. Sakakura and T. Sako, J. Am. Chem. Soc., 1999, **121**, 3793-3794.

Fig. S1 Energy profile of the reaction between CO_2 and 1, and relevant charges (in italic).

Monocarbonation of constrained structures. When 1 was constrained to adopt the geometry depicted as 2 (Figure 5), the transition state TS 2-9 for the CO₂ insertion into one Sn-OCH₃ bond was found to be slightly more stable than 2 by 11.6 kJ mol⁻¹ (Figure S2). This result indicates that the interaction with CO_2 releases somewhat the imposed constraint. The geometry of **TS 2-9** is essentially characterized by one O atom of CO₂ approaching tin at a distance closer to the Sn-O equilibrium value (2.664 vs 2.094 Å) than that of the relevant CH₃O group (2.180 vs 1.408Å). The interaction leads to a significant increase of the absolute charges on the atoms involved in the four-membered stannacycle of TS 2-9. As shown in Figure S3, the marked negative increase on the O atom of CO₂ stems from electron transfer between the HOMOs of the complex, especially HOMO-4, and the LUMO of CO₂. The electron transfer from HOMO-1 of CO₂ toward the LUMO of the complex is responsible for the increase of the negative charge on the oxygen atom of the CH₃O group. These charge transfers lead simultaneously to the increase of the positive charges on Sn and C (CO₂). Two intermediate states IM 2-9 and IM' 2-9 were optimised (Figure S2). Their salient feature consists in the formation of the methylcarbonate ligand in a dihapto coordination mode, the C=O bond being endocyclic. At last, comparison between the two channels $1 \rightarrow TS$ 1-9 and $1 \rightarrow TS$ 2-9 points out that the deformation of 1 to 2 prior to CO₂ insertion leads to a significant increase in the energy barrier (55 vs 30 kJ mol⁻¹). Similar findings were found for the constrained geometries 3-6 (Figures S4-S7).

Reaction progress

Fig. S2 Energy profile of the reaction between CO_2 and 2, and relevant distances (Å) and charges (italic).

Fig. S3 Changes in energy and shape of HOMOs and LUMOs of CO₂ and 2 to 9 via TS 2-9. Are pictured: LUMO, HOMO and HOMO-1 of CO₂, LUMO, HOMO and HOMO-4 of 2, and LUMO and HOMO of the other systems (ΔE between HOMOs and LUMOs in italic).

Fig. S4 Energy profile for the reaction of CO_2 with 3 to 9 (distances in Å).

Fig. S5 Energy profile for the reaction of CO_2 with 4 to 9 (distances in Å).

Fig. S6 Energy profile for the reaction of CO_2 with 5 to 9 (distances in Å).

Reaction progress

Fig. S7 Energy profile for the reaction of CO_2 with 6 to 9 (distances in Å).

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010

Reaction progress

Fig. S8 The two energy diagrams calculated with PW91 functional for the reaction of CO₂ with 1 to 11.

Fig. S9 The two Gibbs energy diagrams for the reaction of 1 with CO_2 to 11 at 298 K. For the route $1 \rightarrow 10 \rightarrow 11$ the energy of states 9 and 10 is given for two complexes (for stoichiometry reason) but for the transition state the barrier is given for one complex.

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is (c) The Owner Societies 2010

Fig. S10 The two Gibbs energy diagrams for the reaction of 1 with CO₂ to 11 at 423 K. For the route $1 \rightarrow 10 \rightarrow 11$ the energy of states 9 and 10 is given for two complexes (for stoichiometry reason) but for the transition state the barrier is given for one complex.

Fig. S11 Energy profile of the reaction between CO_2 and 9, and relevant distances (Å).