The $S({}^{1}D) + H_{2}(X {}^{1}\Sigma_{g}^{+})$ interaction: long-range mutipolar potentials

I. LONG-RANGE ELECTROSTATIC ENERGIES

The electrostatic interaction between the permanent quadrupole moments of $S(^{1}D)$ and $H_{2}(X^{1}\Sigma_{e}^{+})$ can be written as a 5 × 5 potential matrix

$$V_{\lambda,\lambda'}^{\text{elec}}(R,\theta) = \frac{1}{R^5} C_5^{\lambda\lambda'} C_{2,\lambda'-\lambda}(\theta,0), \qquad (1)$$

where $\lambda = 0, \pm 1, \pm 2$ is the projection of the atomic orbital angular momentum **L** along the BF *z*-axis. According to Eq. 14 of the Appendix and the use of the Wigner-Eckart theorem, the electrostatic coefficients $C_5^{\lambda\lambda'}$ take simple forms in terms of the atomic and diatomic quadrupole moments, $\Theta_A = \langle L0|\hat{Q}_{20}^{(A)}|L0\rangle$ and $\Theta_B = \langle 0|\hat{Q}_{20}^{(B)}|0\rangle$, respectively. For convenience, we report in Table I the anaytical forms of the 5×5 electrostatic coefficients $C_5^{\lambda\lambda'}$ in terms of the product $\Theta_A \Theta_B$. The numerical results given in Table I correspond to the computed value $\Theta_A = +2.075$ a.u. for $S(^1D)$ (details of the calculation are given in Sec. III-B) and the value $\Theta_B = +0.481$ a.u. selected from the litterature [1] for H₂.

TABLE I: Long-range non-zero electrostatic coefficients $C_5^{\lambda\lambda'}$ (in atomic units) for the S(¹D) + H₂(X ¹ Σ_g^+) interaction.

λ	λ'	$C_5^{\lambda\lambda'}$ (analytic)	$C_5^{\lambda\lambda'}$
0	0	$6 \Theta_A \Theta_B$	5.988
±1	±1	$3 \Theta_A \Theta_B$	2.994
±2	±2	-6 $\Theta_A \Theta_B$	-5.988
0	±1	$-2 \Theta_A \Theta_B$	-1.996
0	±2	$-1 \ \Theta_A \Theta_B$	-0.998
±1	0	$2 \Theta_A \Theta_B$	1.996
±1	∓1	$-\sqrt{3/2} \Theta_A \Theta_B$	-1.222
±1	±2	$-2\sqrt{6}\Theta_A\Theta_B$	-4.889
±2	0	$-1 \Theta_A \Theta_B$	-0.998
± 2	±1	$2\sqrt{6} \Theta_A \Theta_B$	4.889

II. LONG-RANGE DISPERSION ENERGIES

The dispersion interaction between the dipole-induced moments of $S(^{1}D)$ and $H_{2}(X \ ^{1}\Sigma_{g}^{+})$ can also be written as a 5 × 5 potential matrix

$$V_{\lambda,\lambda'}^{\text{disp}}(R,\theta) = -\frac{1}{R^6} \sum_{k=0,2} C_{6,k}^{\lambda\lambda'} C_{k,\lambda'-\lambda}(\theta,0), \qquad (2)$$

where $C_{6,0}^{\lambda\lambda'}$ and $C_{6,2}^{\lambda\lambda'}$ are the isotropic and anistropic dispersion coefficients, respectively. According to Eqs. 16 and 17 of the Appendix and the use of the Wigner-Eckart theorem, the whole set of dispersion coefficients can be derived from the knowledge of the parallel and perpendicular components of the dynamic dipole polarizabilities associated with H₂ and each atomic substate of definite symmetry. The results given in Table II correspond to the computed values of the dynamic polarizabilities for S(¹D) (see details in Sec. III-B) and the values selected from the litterature [2] for H₂.

TABLE II: Long-range non-zero dispersion coefficients $C_{6,k}^{\lambda\lambda'}$ (in atomic units) for the S(¹D) + H₂(X ¹ Σ_g^+) interaction.

λ	λ'	k	$C_{6,k}^{\lambda\lambda'}$
0	0	0	38.897
±1	±1	0	39.618
±2	± 2	0	41.779
0	0	2	3.668
±1	±1	2	3.907
±2	± 2	2	4.625
0	±1	2	0.159
0	± 2	2	0.159
±1	0	2	-0.159
±1	∓1	2	0.195
±1	± 2	2	0.391
±2	0	2	0.159
±2	±1	2	-0.391

- [1] D. Spelsberg, T. Lorenz, and W. Meyer, J. Chem. Phys. 99, 7845 (1993).
- [2] D. M. Bishop and J. Pipin, J. Chem. Phys. 97, 3375 (1992).