Supplementary Materials

Molecular dynamics simulation study on the isomerization and molecular orientation of liquid crystals formed by azobenzene and (1-cyclohexenyl)phenyldiazene

Xiang-Gui Xue¹, Li Zhao¹, Zhong-Yuan Lu^{*1}, Ming-Hui Li¹ and Ze-Sheng Li^{*1,2}

¹State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China

²Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081, China

^{*} Correspondence author. E-mail: luzhy@jlu.edu.cn

^{*} Correspondence author. E-mail: zeshengli@jlu.edu.cn

Index	Atom Type	Atomic Weight	Charge
1	СА	12.0000	-0.212169
2	СА	12.0000	-0.101706
3	CA	12.0000	-0.101746
4	CA	12.0000	-0.101706
5	СА	12.0000	-0.212169
6	СА	12.0000	0.364609
7	HA	1.00800	0.125335
8	HA	1.00800	0.173231
9	HA	1.00800	0.173231
10	HA	1.00800	0.125335
11	CZ	12.0000	0.401598
12	NZ	14.0070	-0.482531
13	NAT	14.0070	-0.198992
14	NAT	14.0070	-0.173095
15	CA	12.0000	0.332219
16	СА	12.0000	-0.204819
17	CA	12.0000	-0.204819
18	CA	12.0000	-0.173005
19	HA	1.00800	0.120850
20	CA	12.0000	-0.173005
21	HA	1.00800	0.120850
22	CA	12.0000	-0.002102
23	HA	1.00800	0.169450
24	HA	1.00800	0.169450
25	СТ	12.0000	-0.048932
26	HC	1.00800	0.035727
27	HC	1.00800	0.035727
28	СТ	12.0000	0.027656
29	HC	1.00800	0.001103
30	HC	1.00800	0.001103
31	СТ	12.0000	-0.026104
32	HC	1.00800	0.006810
33	HC	1.00800	0.006810
34	СТ	12.0000	0.142701
35	HC	1.00800	-0.020558
36	HC	1.00800	-0.020558
37	СТ	12.0000	-0.232073
38	HC	1.00800	0.052098
39	HC	1.00800	0.052098
40	HC	1.00800	0.052098

Table I: Atom type, atomic weight, and charges for 5AZCN

Index	Atom Type	Atomic Weight	Charge
1	СА	12.0000	-0.226215
2	СА	12.0000	-0.093847
3	СА	12.0000	-0.117258
4	СА	12.0000	-0.093847
5	СА	12.0000	-0.226215
6	СА	12.0000	0.397074
7	HA	1.00800	0.123567
8	HA	1.00800	0.173075
9	HA	1.00800	0.173075
10	HA	1.00800	0.123567
11	CZ	12.0000	0.405163
12	NZ	14.0070	-0.484224
13	NAT	14.0070	-0.218358
14	NAT	14.0070	-0.187026
15	CM	12.0000	0.339508
16	CM	12.0000	-0.382356
17	СТ	12.0000	-0.140270
18	СТ	12.0000	0.109357
19	HC	1.00800	0.145087
20	СТ	12.0000	-0.006671
21	HC	1.00800	0.035572
22	СТ	12.0000	0.012482
23	HC	1.00800	0.029174
24	HC	1.00800	0.029174
25	HC	1.00800	0.031515
26	HC	1.00800	0.031515
27	HC	1.00800	0.036202
28	СТ	12.0000	-0.154842
29	HC	1.00800	0.023619
30	HC	1.00800	0.023619
31	СТ	12.0000	0.066939
32	HC	1.00800	-0.012547
33	HC	1.0080	-0.012547
34	СТ	12.0000	-0.024309
35	HC	1.00800	0.012287
36	НС	1.00800	0.012287
37	СТ	12.0000	0.102826
38	НС	1.00800	-0.012983
39	НС	1.00800	-0.012983
40	СТ	12.0000	-0.206554
41	НС	1.00800	0.046932

Table II: Atom type, atomic weight, and charges for 5CPDCN

Index	Atom Type	Atomic Weight	Charge
42	НС	1.0080	0.046932
43	НС	1.0080	0.046932
44	HC	1.0080	0.035572

field. $E_{bond} = \sum_{bonds} \frac{1}{2} k_b (r - r_0)^2$				
Atom Type	Atom Type	k_b (kcal/mol/Å ²)	$r_{\theta}(\text{\AA})$	
НА	СА	734.00	1.0800	
CA	CA	938.00	1.4000	
СА	CZ	800.00	1.4510	
CA	NAT	854.57	1.4000	
CZ	NZ	1300.00	1.1570	
NAT	NAT	1098.70	1.3400	
СА	СТ	634.00	1.5100	
НС	СТ	680.00	1.0900	
СТ	СТ	536.00	1.5290	
СМ	NC	966.00	1.4048	
СМ	СМ	1098.00	1.3400	
СМ	СТ	634.00	1.5100	
СМ	НС	680.00	1.0800	

Table III: Equilibrium bond lengths and force constants used in the OPLS-AA force

Table IV: Equilibrium angles and force constants used in the OPLS-AA force field.

$$E_{angle} = \sum_{angles} \frac{1}{2} k_{\theta} (\theta - \theta_0)^2$$

Atom Type (deg)	Atom Type	Atom Type	k_{θ} (kcal/mol/rad ²)	$ heta_{ heta}$
HA	СА	СА	70.00	120.00
СА	CA	СА	126.0	120.00
СА	CA	CZ	140.0	120.00
СА	CZ	NZ	300.0	180.00
СА	CA	NAT	140.0	124.00
СА	NAT	NAT	239.0	114.30
СА	CA	СТ	140.0	120.00
СТ	СТ	НС	75.0	110.70
СТ	СТ	СТ	116.7	112.70
НС	СТ	НС	66.0	107.80
СА	СТ	НС	70.0	109.50
СА	СТ	СТ	126.0	114.00
СМ	NAT	NAT	239.0	114.30
СТ	СМ	NAT	140.0	124.0 0
СМ	СМ	NAT	140.0	115.00
СМ	СМ	СТ	140.0	124.00
НС	СМ	СМ	70.0	120.00
НС	СМ	СТ	70.0	117.00
СТ	СТ	СМ	126.0	113.10
НС	СТ	СМ	70.0	109.50

Table V: The dihedral angle parameters used in the OPLS-AA force field.

$$E_{dihedrals} = \sum_{dihedrals} \frac{1}{2} V_1 (1 + \cos\varphi)^2 + \frac{1}{2} V_2 (1 - \cos 2\varphi)^2 + \frac{1}{2} V_3 (1 + \cos 3\varphi)^2$$

Atom Type	Atom Type	Atom Ty	pe Atom	Туре	V1(kcal/mol)	V2(kcal/mol)
V ₃ (kcal/mol)						
НА	СА	CA	HA	0.000	7.250	0.000
НА	СА	CA	CA	0.000	7.25	0.000
СА	CA	CA	CA	0.000	7.250	0.000
НА	СА	CA	CZ	0.000	7.250	0.000
СА	CA	CA	CZ	0.000	7.250	0.000
СА	CA	CZ	NZ	0.000	0.000	0.000
НА	CA	CA	NAT	0.000	7.250	0.000
CA	CA	NAT		NAT	0.000	7.250
0.000						
CA	NAT	NAT		CA	5.200	12.00
0.000						
HA	CA	CA	СТ	0.000	7.250	0.000
CA	CA	CA	СТ	0.000	7.250	0.000
СА	CA	СТ	СТ	0.000	0.000	0.000
СА	CA	СТ	HC	0.000	0.000	0.000
CA	СТ	СТ	HC	0.000	0.000	0.462
СА	СТ	СТ	СТ	0.000	0.000	0.000
СТ	СТ	СТ		СТ	1.300	-0.050
0.200						
НС	СТ	СТ	СТ	0.000	0.000	0.300
HC	СТ	СТ	HC	0.000	0.000	0.300
CA	NAT	NAT	СМ	5.200	12.00	0.000
NAT	NAT	СМ		СМ	0.000	7.250
0.000						
NAT	NAT	СМ	СТ	0.000	7.250	0.000
NAT	СМ	СМ	СТ	0.000	14.00	0.000
NAT	СМ	СМ		НС	0.000	14.00
0.000	~~~		~ -			
NAT	CM	СТ	СТ	0.000	0.000	0.000
NAT	СМ	СТ	НС	0.000	0.000	0.000
CM	CM	СТ	СГ	0.346	0.405	-0.904
CM	CM	CT	H	0.000	0.000	-0.372
CM	СТ	CT	CT	0.000	0.000	0.000
CM	СТ	СГ	H	0.000	0.000	0.366
HC	СМ	СТ	СГ	0.000	0.000	0.000

НС	СМ	СТ	Η	0.000	0.000	0.318
HC	СМ	СМ	СТ	0.000	14.00	0.000
СТ	СМ	СМ	СТ	0.000	14.00	0.000

Table VI: Lennard-Jones parameters used in the OPLS-AA force field.

Atom Type	3	σ
HA	0.0300	2.4200
CA	0.0700	3.5500
CZ	0.1500	3.6500
NZ	0.1700	3.2000
NAT	0.1701	3.2500
СТ	0.0660	3.5000
НС	0.0300	2.5000
СМ	0.0760	3.5500

Fig. S1. Molecular structures of 5AZCN and 5CPDC

5CPDCN

Fig. S2. The instantaneous densities for 5AZCN and 5CPDCN systems within the equilibration stages.

