Table S1 Summary of relevant experimental information on reported measurements of the density, viscosity and electrical conductivity of alkanolammonium ionic liquids (ILs) | Reference | lonic
Liquid | Synthesis | Water mass
fraction w | | Instruments | | | Comments | |--|---------------------|---|--------------------------|----------------|---|--|--|--| | | | | before
measurem | after
nents | Density | Viscosity | Electrical conductivity | - | | Bicak <i>J. Mol. Liq.</i> 2005 , <i>116</i> , 15-18. | [HEA]Fmt | open atmosphere,
no drying | n.a. | n.a. | n.a. | Canon-Fenske
viscometer | WTW Multiline P3
with TetraCon 325
electrode | no temperature
given for density
value | | Kurnia et al.
J. Chem.
Thermodyn.
2009, 41,
517-521. | [HEA]Ac,
[DEA]Ac | educts distilled, N ₂ atmoshpere, equimolar amounts of educts used, stir at 50 °C for (24 to 36) h, subsequent thin layer chromatography, subsequent vacuum distillation | < 0.38·10 ⁻⁵ | n.a. | Anton Paar Oscillating Utube (DMA-5000), absolute uncertainty $\pm 2 \cdot 10^{-2}$ kg·m ⁻³ , calibrated with Millipore water and other ILs, absolute temperature uncertainty ± 0.01 K | cone and plate Brookfield (CAP 2000, L-series), average of three measurements agreeing to within 10 MPa·s, absolute temperature uncertainty \pm 0.01 K | not measured | ILs stired under N₂ atmosphere, open atmosphere during measurements, no degassing mentioned, viscosity is given in MPa⋅s: probably typo and mPa⋅s is meant | | Zhao et al.
J. Chem.
Phys. B
2008, 112,
6923-6936. | [DEA]Ac | amine diluted in solvent (water or methanol), equimolar ratio, solvent removal under vacuum, azeotropic water removal with toluene, final drying | < 0.2·10 ⁻² | n.a. | weigh sample
on volumetric
flask, relative
uncertainty
±1% | Schott micro-
Ubbelohde
capillary
viscometer | impedance
measurement at
25 °C at (0.1 and
1) MHz with a
Solartron 1260
response analyzer | no information
about atmosphere
during
measurements | ## at 0.03 mbar for 24 h | Cota et al.
J. Phys.
Chem. B
2007, 111,
12468-
12477. | [HEA]Fmt,
[DEA]Fmt
[TEA]Fmt | stir at r.t. for 24 h,
heat for 24 h to
evaporize unreacted
acid, stored at
constant humidity,
degassing with
ultrasound, drying
with molecular sieve | n.a. | n.a. | Anton Paar DSA-5000 vibrational tube, calibration with Millipore water, absolute temperature uncertainty ±0.01 K | not measured | Jenway model 4150 conductivity/TDS meter, relative uncertainty \pm 0.5 %, absolute temperature uncertainty \pm 0.5 K | no information about atmosphere during measurements, wrong names for [DEA] and [TEA] given, however educts and molecular weights suggest that [DEA] and [TEA] compounds are meant | |--|-----------------------------------|--|-------------------------|------|--|--|---|---| | Greaves et al. J. Phys. Chem B. 2006, 110, 22479- 22487. | [HEA]Fmt,
[HEA]Ac | equimolar amounts
of educts used ,
drying at 0.01 mbar,
subsequent freeze
drying, formation of
amide byproducts
determined by NMR | < 0.55·10 ⁻² | n.a. | specific gravity
bottle | Carri-Med CSL2
100 Controlled
Stress
Rheometer,
cone and plate
method | CDC 104 electrode with CDM 83 conductivity meter, or Inlab r 730-laboratory conductive electrode with Mettler Toledo Seven Multi conductivity meter, calibrated against standards from Mettler Toledo | no information
about atmosphere
during
measurements | | Greaves et al. J. Phys. Chem. B | [HEA]Fmt,
[DEA]Fmt | equimolar amounts
of educts used,
drying at 0.01 mbar,
subsequent freeze | < 1.41·10 ⁻² | n.a. | n.a. | n.a. | n.a. | no information
about atmosphere
during
measurements, no | | 2010 , <i>114</i> , 10022-10031. | drying | | | | | | temperatures for
measurements
given | |---|--|-------------------------|------|---|---|--|--| | Burrell et al. [DEA]Fmt, Phys. Chem. [DEA]Ac Chem. Phys. 2010, 12, 1571-1577. | amines purified via fractional distillation, formic acid distilled over CaH ₂ , glacial acetic acid distilled over KMnO ₄ , predried reagents, stoichiometric educt ratios kept at all time during preparation | < 1.25·10 ⁻⁴ | n.a. | Anton Paar
DMA 4100 M | TA instruments AR-G2 controlled stress cone and plate rheometer | impedance
measurement at
25 °C at (0.1 and
1) MHz with a
Solartron 1260
response analyzer | no information
about atmosphere
during
measurements, no
temperatures given
for density and
viscosity | | Yuan et al. [HEA]Fmt J. Chem. [HEA]Ac, Eng. Data [TEA]Ac 2007, 52, 596-599. | amines distilled, reaction of equimolar amounts of educts dissolved in ethanol, subsequent solvent evaporation, stir with activated carbon, filter and final vacuum drying at 50 °C for 48 h | < 1.0·10 ⁻³ | n.a. | 5 mL pycnometer, absolute uncertainty \pm 0.001 | NDJ-1 rotary type viscometer, absolute uncertainty ±1 | DDS-307 conductivity meter, absolute uncertainty ± 0.1 | All measurements at 298.2 K with absolute uncertainty of \pm 0.1 K |