Theoretical studies on the electron capture properties of the H₂SO₄...HOO[•]

complex and its implications as an alternative source of HOOH

Ping Li^{*ab}, Zhiying Ma^a, Weihua Wang^{*a}, Rui Song^a, Yazhou Zhai^a, Siwei Bi^a, Haitao Sun^a, Yuxiang Bu^{*b} ^a Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China ^bKey Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China

Electronic Supplementary Information

Fig. S1 The optimized radical complexes $H_2SO_4 \cdots HOO^{\bullet} \cdots (H_2O)_n (n=1-2)$ and their electron capture products at the B3LYP/6-311++G(3df,3pd) level of theory.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

Time	Natural charge
0	0.507
1	0.507
2	0.506
3	0.500
4	0.492
5	0.482
6	0.473
7	0.469
8	0.472
9	0.476
10	0.472
11	0.456
12	0.448
13	0.461
14	0.469
A1	0.477

Table S1 The calculated natural charge on the H7 atom of the geometries obtained during molecular dynamical process (within 14 fs) and the optimized anionic complex A1 a

^{*a*} The natural charge is calculated at the MP2/6-311++G(3df,3pd) level of theory on the basis of the dynamics.