Electronic Supplementary Information

Silver Residues As a Possible Key to Remarkable Oxidative Catalytic Activity of Nanoporous Gold

Lyudmila V. Moskaleva,^{1,*} Sarah Röhe,¹ Arne Wittstock,¹ Volkmar Zielasek,¹ Thorsten Klüner,² Konstantin M. Neyman,³ Marcus Bäumer^{1,*}

- ¹ Institut für Angewandte und Physikalische Chemie, Universität Bremen, 28334 Bremen, Germany
- ² Institut für Reine und Angewandte Chemie, Universität Oldenburg, 26111 Oldenburg, Germany
- ³ Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona and IQTCUB & Departament de Química Física, Universitat de Barcelona, 08028 Barcelona, Spain

The supplementary information includes

Tables with energetic and structural data of all studied adsorption complexes(Tables S1-S6)

Analysis of electronic structure in representative co-adsorbed systems Cartesian coordinates of clean slab models and selected adsorption configurations as well as transition states (Tables S7, S8)

Model	Au coordination number	E_{ad} , eV
(1 × 3) Au(332) ^a	7	-0.65
(1×3) Au(332) with vacancies ^a	6	-0.75
(1×3) Au(332) with vacancies ^a	5	-0.88
(2 × 1) Au(321) ^b	6 and 8 ^c	-0.45 to -0.62 ^d
(2 × 1) Au(321) ^b	9	-0.16
(2 × 1) Au(321) ^b	6	-0.80
(2×1) Au(321) with vacancies ^b	5	-0.88
(2×1) Au(321) with displaced atoms ^b	5	-0.88

TABLE S1. Adsorption energies of CO on perfect and defective Au(332) and Au(321) surfaces

^{*a*} Ref. 25. ^{*b*} This work. Models are shown in Fig. 2. ^{*c*} μ -CO. ^{*d*} Variation in E_{ad} due to the presence or absence of co-adsorbed end-on or μ -CO in the same unit cell.

Figure S1. Schematic representation of the sequential CO desorption from the Au(321) surface saturated with CO (i.e. some of the CO adsorbed as μ -CO). This model offers an interpretation for two desorption peaks above 100 K (β and γ) observed in Ref. 27.

Atomic positions replaced by Ag ^b	$E_{ad}(O_2)^{c}$	$E_{a}{}^{d}$	ΔE^{e}
none	-0.14	1.10	0.23
1′, 2	-0.31	1.20	0.19
1, 1′, 2	-0.34	1.29	0.13
1′, 2, 3	-0.32	1.08	0.05
1, 1′, 2, 5	-0.36	1.05	-0.05
1′, 2, 4, 5	-0.33	0.92	-0.14
1, 1′, 2, 3, 4, 5	-0.39	0.85	-0.34
1, 1′, 2, 2′, 3, 3′	-0.42	1.03	-0.05
1, 1′, 2, 2′, 3, 3′, 4, 5	-0.45	0.68	-0.37

TABLE S2. Energetics^a (eV) of O₂ dissociation on Au(321) surfaces with Ag impurities

^aCalculated using (1 × 2) unit cell. ^b Numbering of surface atoms is defined in Fig. 1. ^cAdsorption energy of O₂ is calculated according to Eq. 2. ^dActivation energy: $E_a = E_{TS} - E_{substrate-O_2}$. ^eChange of energy: $\Delta E = E_{substrate-O\cdots O} - E_{substrate-O_2}$.

Model				$(\mathbf{o})^{\mathbf{b}}$		
No. of Au substitute	ı atoms ed by Ag ^a	Adsorption site of O	Ea	d(O) ²	<i>a</i> (O-Au)	<i>a</i> (O-Ag)
(2 × 2)	(3 × 3)		(2 × 2)	(3 × 3)	(2 × 2)	(2 × 2)
0 [0]	0 [0]	hcp	0.38		214 imes 3	
0 [0]	0 [0]	fcc	0.14	0.07	213 imes 3	
1 [25]	1 [11]	hcp	0.26		211 × 2	225
1 [25]	1 [11]	fcc	0.02	0.00	210×2	221
3 [75]	3 [33]	hcp	0.09			216 × 3
3 [75]	3 [33]	fcc	-0.11	-0.09		214 imes 3
4 [100]		hcp	-0.21			216 × 3
4 [100]		fcc	-0.37			214×3

TABLE S3. Adsorption energies (eV) and adsorption geometries (distances in pm) for atomic oxygen adsorbed on the Au(111) surface with and without Ag impurities

^aOne to four atoms in the topmost layer of a (2×2) or (3×3) unit cell were substituted by Ag. The substitution begins at that hollow site where O adsorbate resides, see also Fig. 7. Values in brackets are the corresponding surface concentrations of Ag in atom %. ^bAdsorption energies are calculated with respect to gaseous O₂ and the separated substrate according to Eq. 1.

Model			$E_{ad}($	CO) ^b	d(C-Au)	<i>d</i> (C-O)	d(O-Au)	<i>d</i> (O-Ag)
No. of Au substitute	i atoms ed by Ag ^a	Adsorption site of O						
(2 × 2)	(3 × 3)		(2 × 2)	(3 × 3)	(2 × 2)	(2 × 2)	(2 × 2)	(2 × 2)
0 [0]	0 [0]	hcp	-0.43		204	115	217 × 3	
0 [0]	0 [0]	fcc	-0.44	-0.37	204	115	215 × 2, 214	
1 [25]	1 [11]	hcp	-0.50		203	115	214 × 2	228
1 [25]	1 [11]	fcc	-0.49	-0.37	204	115	212 × 2	222
3 [75]	3 [33]	hcp	-0.66		202	115		218 × 3
3 [75]	3 [33]	fcc	-0.62	-0.41	203	115		216 imes 3

TABLE S4. Adsorption energies (eV) and adsorption geometries (distances in pm) for CO adsorbed on the substituted Au(111) surface with preadsorbed atomic oxygen

^aOne or three atoms in the topmost layer of a (2×2) or (3×3) unit cell were substituted by Ag at that hollow site where O adsorbate resides. Values in brackets are the corresponding surface concentrations of Ag in atom %. ^bAdsorption energies are calculated with respect to free CO and the separated substrate with preadsorbed oxygen according to Eq. 3.

TABLE S5.	Adsorption	energies	and	adsorption	geometries	for	atomic	oxygen	adsorbed	on	the	Au(321)	surface	with	Ag
impurities															

N(Ag) ^a	Adsorption	$E_{ad}(O)$, eV ^b	Distances, pm		N(Ag) ^a	Adsorption	$E_{ad}(O), eV^{b}$	Distances, pm	
	site of O ^a		O-Au	O-Ag		site of O ^a		O-Au	O-Ag
None	h1 (II, hcp)	0.40 ^c [0.42] ^c	210, 210, 247		2, 3′, 4 (h7)	h1 (II, hcp)	-0.23	208	219, 221
None	h2/h4 (I, fcc)	-0.15 [°] [-0.16] [°]	214, 215, 218		2, 3′, 4 (h7)	h2 (I, fcc)	-0.33	214, 212	220
None	h3/h7 (II, fcc)	0.18 [°] [0.14] [°]	215, 215, 223		2, 3′, 4 (h7)	h4 (I, fcc)	-0.20	211, 212	224
None	h9/h10 (l, hcp)	0.04 ^c [0.04] ^c	211, 215, 222		2, 3′, 4 (h7)	h7 (II, fcc)	-0.30		215, 216, 218
None	h5 (I, fcc)	0.07 ^c [0.11] ^c	209, 215, 233		2, 3′, 4 (h7)	h9 (I, hcp)	-0.37	207	217, 222
None	b _{2-1'} / b _{2'-1}	0.07 ^c	204, 205		2, 3, 4 (h1)	h1 (II, hcp)	0.00		215, 215, 218
None	fh1/fh2 (I)	unstable			2, 3, 4 (h1)	h2 (I, fcc)	-0.41	208	217, 220
2	h1 (II, hcp)	0.19	210, 216	223	2, 3, 4 (h1)	h3 (II, fcc)	0.04	211, 217	222
2	h2 (I, fcc)	-0.22	210, 214	221	2, 3, 4 (h1)	h4 (I, fcc)	-0.09	215, 216, 217	
2	h7 (II, fcc)	0.06	212, 216	220	2, 3, 4 (h1)	h5 (I, fcc)	-0.15	210, 221	224
2	h5 (I, fcc)	-0.03	209, 223	221	2, 3, 4 (h1)	h6 (III, fcc)	0.09	221	219, 222
2	h6 (III, fcc)	0.28	210, 218, 227		2, 3, 4 (h1)	h7 (II, fcc)	-0.15	211	217, 221
2	h9 (I, hcp)	-0.13	209, 215	223	2, 3, 4 (h1)	h9 (I, hcp)	-0.19	210, 214	222
2	fh1 (I)	0.04	207, 223, 306	240	2, 3, 4 (h1)	h10 (I, hcp)	-0.27	208, 212	232
2	b ₁₋₂	0.19	199	213	2, 3, 4 (h1)	fh1 (I)	-0.11	204, 214, 218	218, 222
2	b _{2-1'}	0.08	199	212	3, 4′, 5 (h8)	h2 (I, fcc)	-0.15	210, 213	226
					3, 4′, 5 (h8)	h3 (II, fcc)	-0.13	210	219, 221
					3, 4′, 5 (h8)	h6 (III, fcc)	0.15	213	226, 216
					3, 4′, 5 (h8)	h8 (III, hcp)	-0.18	210	220, 232, 239
					3, 4′, 5 (h8)	h10 (I, hcp)	-0.13	209, 212	230
					3, 4′, 5 (h8)	fh2 (I)	-0.05	206, 219, 310	247

^{*a*}N(Ag) stands for atomic positions replaced by Ag. Numbering of surface atoms and notations for O adsorption sites are defined in Figs. 1 and 11. ^{*b*}Adsorption energies are calculated with respect to gaseous O₂ and the separated substrate according to Eq. 1. ^{*c*}Calculated using a (1 × 1) unit cell. Values in brackets are from Ref. 42.

N(Ag) ^a	Adsorption	Adsorption	$E_{ad}(CO)$, eV ^b	Distan	ces, pn	า	
	site of O [°]	site of CO		C-Au	C-0	O-Au	O-Ag
Pure Au	none	1	-0.81 (-0.80 ^c)	198	115		
Pure Au	h1 (II, hcp)	1/1′	-0.89 <i>°</i>	198	115	207, 210, 271	
Pure Au	h2/h4 (I, fcc)	1/1′	-0.97 ^c	189	115	197, 219, 224	
Pure Au	h3/h7 (II, fcc)	1/1′	-0.88 ^c	197	115	215, 215, 224	
Pure Au	h9/h10 (I, hcp)	1/1′	-1.03 ^c	189	115	197, 221, 227	
Pure Au	h5 (I, fcc)	1	-1.05 ^c	190	115	198, 216, 231	
Pure Au	fh1/fh2 (I)	1/1′	-1.10 ^{c,d}				
2	h1 (II, hcp)	1	-0.85 (-0.91 ^c)	198	115	211, 217	222
2	h2 (I, fcc)	1	-1.01 (-0.95 ^c)	189	115	197, 217	222
2′	h3 (II, fcc)	1	-0.88 (-0.90 ^c)	198	115	212, 218	220
2′	h4 (I, fcc)	1	-0.81	197	115	210, 215	221
2	h5 (I, fcc)	1	-0.90				
2′	h10 (I, hcp)	1	-1.02	189	115	196, 222	225
2	fh1 (I)	1′	-0.89	190	116	196, 241, 296, 318	229
2	b ₁₋₂	1′	-0.85	198	115	199	214
2, 3, 4 (h1)	h1 (II, hcp)	1	-0.87 (-0.89 ^c)	198	115		214, 215, 219
2, 3, 4 (h1)	h2 (I, fcc)	1	-1.01 (-1.12 ^c)	189	115	195	220, 221
2, 3, 4 (h1)	h2 (I, fcc)	1′	-0.80	198	115	203	217, 220
2, 3, 4 (h1)	h4 (I, fcc)	1	-0.81	198	115	216, 216, 218	
2, 3, 4 (h1)	h7 (II, fcc)	1′	-0.89	198	115	211	217, 222
2, 3, 4 (h1)	fh1 (I)	1′	-0.95	190	116	195, 309, 325	229, 232
2, 3, 4 (h1)	h2 (I, fcc)	1′	-0.90	198	115	h2: 205	h2: 220, 224
	and h7 (II, fcc)					h7: 207	h7: 220, 225

TABLE S6. Adsorption energies and adsorption geometries for CO adsorbed on the Au(321) surface with Ag impurities and co-adsorbed atomic oxygen

^aN(Ag) stands for atomic positions replaced by Ag. Numbering of surface atoms and notations for O adsorption sites are defined in Figs. 1 and 11. ^bAdsorption energies are calculated with respect to free CO and the separated substrate with preadsorbed oxygen according to Eq. 3. ^cCalculated using a (1 × 1) unit cell. ^dCalculated with respect to O adsorbed at b_{2-1'}/ b_{2'-1} because O adsorption at fh1/fh2 was found unstable.

Electronic structure. To elucidate the nature of binding in co-adsorbed systems described in the main text we examine the changes in the local density of states (LDOS) when O adsorbs near to CO at two representative sites of group I and group II. The LDOS were obtained for the adsorption complexes modeled using (1×1) surface unit cell.

Panel **a** of Fig. S2 shows the LDOS for a CO molecule adsorbed at a kink site of Au(321) without co-adsorbed oxygen. The bonding of CO to transition metal surfaces is dominated by an interaction of the 5σ HOMO and $2\pi^*$ LUMO of CO with the metal d valence states.¹ The two sharp peaks on the left hand side are the 5σ and 1π orbitals of CO. The 5σ orbital is pushed down to low energies through interaction with the

Figure S2. LDOS for Au(321) interacting with the adsorbates (a) CO, (b) O at h1, (d) CO and O at h3, (e) CO and O at h2. (c), (f) and (g) are analogous to (b), (d) and (e), respectively, but Ag replaces atoms in positions 2, 3, 4. Black, blue, green, and red lines represent the d states of Au (at position 1), d states of Ag (at position 2), sp states of CO, and sp states of O, respectively. Gray filled area shows the d states of Au (at position 1) for the corresponding surfaces without adsorbates.

metal states and emerges on the left of 1π . The broad feature above the Fermi level, $\varepsilon_{\rm F}$, originates from the interaction of the filled Au d levels with the unoccupied $2\pi^*$ -orbitals of CO. Shifting some of the Au d density above the Fermi level results in a partial charge transfer from Au to CO. Concomitantly, the Au d band notably sharpens due to interaction with CO and shifts to low energies manifesting a rather strong coupling between the electronic states of the substrate and adsorbate consistent with a considerable adsorption energy of -0.80 eV.

Panel **b** shows the LDOS of an O atom adsorbed at the h2 site (group I) of Au(321). This is a representative example whereas the LDOS for other

adsorption sites of O look quite similar. It is seen that the interaction of O sp states with the Au d states results in a bonding and antibonding combinations, corresponding to the two regions of high O derived LDOS on both sides of the Au d band. The

¹ Hammer, B.; Morikawa, Y.; Nørskov, J. K. *Phys. Rev. Lett.* **1996**, *76*, 2141.

antibonding states are largely occupied, which is reflected in only weak bonding between Au and O. For comparison, panel c contains the LDOS of an analogous adsorption complex on a silver contaminated surface, where three surface atoms at site h3 (and consequently at all the sites of group II due to translational symmetry) are replaced by Ag, corresponding to surface Ag content of 60%. Note that a replacement of less than three metal atoms in the unit cell by Ag did not produce notable changes in the LDOS plots. In panel c one can see some sharpening of the Au-O bonding and antibonding bands and a slight shift of the bonding states to lower energy reflected in a higher binding energy of oxygen on a surface with Ag patches, Table S5.

The LDOS of co-adsorbed CO at a kink site and O at a neighboring h3 site (group II) are shown in panel **d**. The overall picture is very similar to that for CO alone shown in panel **a**. The LDOS of the co-adsorbed O atom is similar to that given in panel **b**; although the antibonding Au–O states extend a bit more above the Fermi level. This change correlates with a slight increase in the adsorption strength of CO, by 0.08 eV, due to co-adsorption with O in this configuration as described in the previous section. Mind that no significant buildup of the Au d LDOS can be seen at the region of high O LDOS right above the Fermi level because the O atom adsorbed at an h3 site is not bound to the kink Au atom, whose LDOS is depicted.

In contrast, the co-adsorbed structure, where O is located in immediate vicinity of CO at an h2 site (group I) is characterized by the density of states, panel **e**, which is not just a superposition of those obtained for individually adsorbed CO and O. Particularly notable is the sharpening of the Au d band and of the $2\pi^*$ derived states of CO and Au, which is indicative of a more efficient orbital overlap as compared to individually adsorbed CO. A more efficient spatial orbital coupling is made possible through rather large displacements of the Au atoms along the step edge as pointed to above. Particularly notable is the coupling between the orbitals of co-adsorbed O with the 5σ and $2\pi^*$ CO derived states mediated by Au. Consequently, the adsorption energy of CO in this configuration increases in magnitude by 0.17 eV with respect to the case of individually adsorbed CO.

Panels **f** and **g** illustrate the changes in LDOS induced by a substitution of three surface atoms at site h3 with Ag. Panel **f** shows the LDOS for the co-adsorbed CO at a kink and O at h3 and panel **g** corresponds to the co-adsorption of O at h2 (analogous to the pure Au surface complexes whose LDOS are shown in panels **d** and **e**, respectively). Both plots look quite similar to those of their parent systems with no Ag

admixtures. The main difference is the notable sharpening of the O-Au and O-Ag bonding and antibonding states seen in both panels **e** and **f**. However, this difference is reflected mainly in the increased O adsorption energy but not that of CO. In the case of cooperative adsorption (**f**) also the binding energy of CO increases slightly, by 0.15 eV (Table S6), due to favorable coupling with O-Ag and O-Au states.

Table S7. Cartesian coordinates (in Å) of the atoms in the optimized clean Au(321) slabs. The uppermost seven atoms were allowed to relax, the remaining seven were kept fixed at the theoretical bulk-terminated geometry

(1x1) surface unit cell					(2x1) surface unit cell				
cell vectors:				cel	l vectors:				
5.11029563	33, 6.5973632	94, 15.61221	1042	10.2	220591266, 6.5973632	94, 15.61221	1042		
Element	Х	Y	Z		X Y	Z	Х		
Au	0	0	0	Au	0	0	0		
Au	4.25856069	5.00787961	0.55757895	Au	5.11029563	0	0		
Au	1.70341804	3.64209424	1.11515791	Au	4.25856069	5.00787961	0.55757895		
Au	4.25857104	2.27630893	1.67273686	Au	9.36885632	5.00787961	0.55757895		
Au	1.70342844	0.91052354	2.2303159	Au	1.70341804	3.64209424	1.11515791		
Au	5.96198913	5.91840316	2.78789486	Au	6.81371367	3.64209424	1.11515791		
Au	3.40684648	4.55261778	3.34547381	Au	4.25857104	2.27630893	1.67273686		
Au	0.85995098	3.18537991	3.88889092	Au	9.36886667	2.27630893	1.67273686		
Au	3.40223455	1.76080273	4.383051	Au	1.70342844	0.91052354	2.2303159		
Au	0.74453712	0.33499756	5.10172952	Au	6.81372407	0.91052354	2.2303159		
Au	5.03811829	5.41577868	5.72369485	Au	5.96198913	5.91840317	2.78789485		
Au	2.49860905	4.10775907	6.16798162	Au	11.0722848	5.91840317	2.78789485		
Au	5.06402636	2.70856224	6.5996618	Au	3.40684648	4.55261778	3.34547381		
Au	2.5136929	1.43988246	6.99954632	Au	8.51714211	4.55261778	3.34547381		
				Au	0.86734068	3.18125722	3.88989376		
				Au	5.97763631	3.18125722	3.88989376		
				Au	3.41507529	1.76742102	4.37891446		
				Au	8.52537092	1.76742102	4.37891446		
				Au	0.75507199	0.34229772	5.09817464		
				Au	5.86536763	0.34229772	5.09817464		
				Au	5.04838733	5.42332429	5.69870325		
				Au	10.158683	5.42332429	5.69870325		
				Au	2.5074324	4.11584697	6.1689434		
				Au	7.61772803	4.11584697	6.1689434		
				Au	5.06994772	2.71915001	6.60491625		
				Au	10.1802434	2.71915001	6.60491625		
				Au	2.52393337	1.45733569	6.99512193		
				Au	7.63422901	1.45733569	6.99512193		

Transi	Transition structures for O ₂ dissociation on pure and Ag-substituted Au(321) ^a							
	Pure	Au(321)			Ag at po	sitions 1', 2	b	
Element	Х	Y	Z	Element	Х	Y	Z	
Au	11.0583723	3.16085951	3.9074049	Au	11.0234518	3.15019674	3.95336986	
Au	5.94525557	3.19176547	3.89174207	Au	5.94268258	3.1843801	3.8772146	
Au	3.38230813	1.76775263	4.42991265	Au	3.36200164	1.74618386	4.43256388	
Au	8.48174412	1.78810903	4.40793186	Au	8.47852445	1.79143364	4.44518151	
Au	0.82980731	0.31755532	4.99721117	Au	0.79041771	0.36595034	5.01924324	
Au	5.87273296	0.42178452	5.07945985	Au	5.89969353	0.38584845	5.0844123	
Au	5.07008892	5.44650648	5.69404653	Au	5.07960234	5.44756153	5.70418875	
Au	10.1390085	5.44937509	5.59125047	Au	10.1464216	5.41599115	5.66166393	
Au	2.55487548	4.03514373	6.13590057	Au	2.54446881	4.11348598	6.10000104	
Au	7.54854049	4.17805123	6.1500801	Au	7.56739119	4.08577414	6.12239748	
Au	5.0763432	2.75581466	6.68056268	Au	5.03348018	2.69307617	6.59422717	
Au	2.68314537	1.40733575	7.16829963	Au	2.54869782	1.47882776	7.13731168	
Au	7.48985349	1.57274359	7.15436863	Ag	7.51534362	1.44890168	7.17355584	
Au	10.0894088	2.95976152	6.63227085	Ag	10.1395031	2.88630463	6.79232177	
0	0.41436913	0.95768157	7.19790493	0	0.77591534	1.29652628	8.16240546	
0	9.01454043	0.16590259	7.48436397	0	9.55252351	0.51081536	7.11586674	

Table S8. Cartesian coordinates (Å) of selected configurations. Only the coordinates of those atoms whose positions were relaxed are listed

Ag at positions 1, 1', 2^b

Ag at positions 1', 2, 3 b

Element	Х	Y	Z	Element	Х	Y	Z
Au	11.0317312	3.1449491	3.95892892	Au	11.0587469	3.17461099	3.9631752
Au	5.94552543	3.16892174	3.86365503	Au	5.94564751	3.18592216	3.87500991
Au	3.34387938	1.74773935	4.46571594	Au	3.3698503	1.78195503	4.44133328
Au	8.48386053	1.79601166	4.43359598	Au	8.49479909	1.80572961	4.42233232
Au	0.7953014	0.37399451	5.04788019	Au	0.80307612	0.39139303	5.00389664
Au	5.87745236	0.40021957	5.08728566	Au	5.90199716	0.39088901	5.07119757
Au	5.06994741	5.44952039	5.67475131	Au	5.08924434	5.44547382	5.66903134
Au	10.1393724	5.4027589	5.63079858	Au	10.1175892	5.38918795	5.61716513
Au	2.56427372	4.07928489	6.11278504	Au	7.56930165	4.07164436	6.13895894
Au	7.58509324	4.10192422	6.10900319	Au	5.08245055	2.68970544	6.59784521
Au	5.06678951	2.73471533	6.59214769	Au	2.61380429	1.49329727	7.13728806
Ag	2.56757723	1.42008523	7.20068811	Ag	2.54574615	4.1631332	6.19153199
Ag	7.51867351	1.46453646	7.15605557	Ag	7.61516034	1.38511618	7.13052345
Ag	10.1646397	2.90261985	6.81332359	Ag	10.1464265	2.87980885	6.79584233
0	0.660069	1.3685476	8.15357138	0	0.8166408	1.3019184	8.12985347
0	9.48196886	0.41827208	7.06210236	0	9.7235861	0.39205335	7.04456568

Ti	Transition structures for O ₂ dissociation on Ag-substituted Au(321) ^a							
	Ag at positi	ons 1, 1′, 2	2, 5 ^b	A	Ag at position	ons 1, 1′, 4	, 5 ^b	
Element	Х	Y	Z	Element	Х	Y	Z	
Au	11.0423748	3.14179201	3.94331108	Au	11.0414977	3.16016004	3.93614498	
Au	5.95174386	3.17025088	3.85754997	Au	5.94599185	3.17872592	3.87212194	
Au	3.35516171	1.73262777	4.45716737	Au	3.38455042	1.72388485	4.42695718	
Au	8.49175063	1.7954571	4.42617931	Au	8.49885024	1.78934404	4.43095892	
Au	5.88884266	0.39104008	5.09280648	Au	5.93182812	0.35310544	5.08694645	
Au	5.08086474	5.43101203	5.65054966	Au	5.11060552	5.40409474	5.68819966	
Au	10.1458245	5.38016999	5.60628132	Au	7.61143062	4.04576986	6.10947623	
Au	2.58221934	4.04390277	6.08730754	Au	5.08490398	2.64942427	6.59996138	
Au	7.60356616	4.08412715	6.11447556	Au	2.59031905	4.04663154	6.06643704	
Au	5.09668176	2.72723524	6.58939194	Au	2.63894053	1.41790682	7.15588718	
Ag	0.79245591	0.3963921	5.10865611	Ag	0.81352256	0.37308113	5.06892365	
Ag	2.65202946	1.39502139	7.21002592	Ag	10.1969193	5.39694473	5.63984883	
Ag	7.54395827	1.4489912	7.15108722	Ag	7.56160011	1.40451738	7.16387201	
Ag	10.195546	2.90163295	6.8141628	Ag	10.1920218	2.83375023	6.74124512	
0	0.69998824	1.29129195	8.04687229	0	0.83393782	1.22533982	8.10948212	
0	9.47078438	0.35755577	7.04043152	0	9.58925393	0.48526042	7.06201299	
			h				h	
Ag	at position	s 1, 1′, 2, 3	, 4, 5 ^b		Ag at posit	ions 1, 1′, 2	2, 2′, 3, 3′ ^b	
Ag Element	at position X	s 1, 1′, 2, 3 Y	, 4, 5 ^b Z	Element	Ag at posit X	ions 1, 1′, 2 Y	2, 2′, 3, 3′ ^b Z	
Ag Element Au	at position X 0.85136748	s 1, 1′, 2, 3 Y 3.1814309	, 4, 5 ^b Z 3.95321067	Element Au	Ag at posit X 0.8736409	ions 1, 1', 2 Y 3.19703566	2, 2′, 3, 3′ ^b Z 3.95263819	
Ag Element Au Au	at position X 0.85136748 5.94330329	s 1, 1', 2, 3 Y 3.1814309 3.16986861	, 4, 5 ^b Z 3.95321067 3.85269205	Element Au Au	Ag at posit X 0.8736409 5.95257059	ions 1, 1', 2 Y 3.19703566 3.17344037	2, 2', 3, 3'^b Z 3.95263819 3.90933341	
Ag Element Au Au Au	at position X 0.85136748 5.94330329 3.35116078	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471	, 4, 5 ^b Z 3.95321067 3.85269205 4.47052084	Element Au Au Au	Ag at posit X 0.8736409 5.95257059 3.40962813	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812	
Ag Element Au Au Au Au	at position X 0.85136748 5.94330329 3.35116078 8.49883215	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758	, 4, 5 ^b Z 3.95321067 3.85269205 4.47052084 4.41007872	Element Au Au Au Au	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476	
Ag Element Au Au Au Au Au	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451	, 4, 5 ^b 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396	Element Au Au Au Au Au	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933	
Ag Element Au Au Au Au Au Au	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536	, 4, 5 ^b Z 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389	Element Au Au Au Au Au Au Au	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022	
Ag Element Au Au Au Au Au Au Au	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647	Z 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072	Element Au Au Au Au Au Au Au Au	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914	
Ag Element Au Au Au Au Au Au Au Au	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733	, 4, 5 ^b 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592	Element Au Au Au Au Au Au Au Au Au	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637	
Ag Element Au Au Au Au Au Au Au Au Au Ag	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805 0.80433067	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733 0.4142029	Z 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592 5.0629434	Element Au Au Au Au Au Au Au Au Au Au Ag	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259 7.60443741	ions 1, 1', 2 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895 4.07445399	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637 6.15084852	
Ag Element Au Au Au Au Au Au Au Au Ag Ag	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805 0.80433067 10.1354032	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733 0.4142029 5.39708039	Z 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592 5.0629434 5.57573234	Element Au Au Au Au Au Au Au Au Au Ag Ag	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259 7.60443741 5.12325346	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895 4.07445399 2.67465671	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637 6.15084852 6.66156523	
Ag Element Au Au Au Au Au Au Au Ag Ag	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805 0.80433067 10.1354032 2.56461777	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733 0.4142029 5.39708039 4.1025955	, 4, 5 ^b 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592 5.0629434 5.57573234 6.17364241	Element Au Au Au Au Au Au Au Au Au Ag Ag	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259 7.60443741 5.12325346 2.63767702	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895 4.07445399 2.67465671 4.0771104	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637 6.15084852 6.66156523 6.22384556	
Ag Element Au Au Au Au Au Au Au Ag Ag Ag	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805 0.80433067 10.1354032 2.56461777 2.65969971	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733 0.4142029 5.39708039 4.1025955 1.38975696	, 4, 5 ^b 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592 5.0629434 5.57573234 6.17364241 7.1941462	Element Au Au Au Au Au Au Au Au Ag Ag Ag	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259 7.60443741 5.12325346 2.63767702 2.45851014	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895 4.07445399 2.67465671 4.0771104 1.32046727	2, 2', 3, 3' b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637 6.15084852 6.66156523 6.22384556 7.17013228	
Ag Element Au Au Au Au Au Au Au Ag Ag Ag Ag Ag	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805 0.80433067 10.1354032 2.56461777 2.65969971 7.61773911	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733 0.4142029 5.39708039 4.1025955 1.38975696 1.38523169	Z 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592 5.0629434 5.57573234 6.17364241 7.1941462 7.12331528	Element Au Au Au Au Au Au Au Au Au Ag Ag Ag Ag Ag	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259 7.60443741 5.12325346 2.63767702 2.45851014 7.7917811	ions 1, 1', 2 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895 4.07445399 2.67465671 4.0771104 1.32046727 1.34321163	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637 6.15084852 6.66156523 6.22384556 7.17013228 7.13507316	
Ag Element Au Au Au Au Au Au Au Ag Ag Ag Ag Ag Ag	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805 0.80433067 10.1354032 2.56461777 2.65969971 7.61773911 10.1576308	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733 0.4142029 5.39708039 4.1025955 1.38975696 1.38523169 2.85817124	Z 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592 5.0629434 5.57573234 6.17364241 7.1941462 7.12331528 6.7350069	Element Au Au Au Au Au Au Au Au Au Ag Ag Ag Ag Ag Ag Ag	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259 7.60443741 5.12325346 2.63767702 2.45851014 7.7917811 10.2049948	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895 4.07445399 2.67465671 4.0771104 1.32046727 1.34321163 2.87907116	2, 2', 3, 3' ^b Z 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637 6.15084852 6.66156523 6.22384556 7.17013228 7.13507316 6.722424	
Ag Element Au Au Au Au Au Au Au Au Ag Ag Ag Ag Ag Ag O	at position X 0.85136748 5.94330329 3.35116078 8.49883215 5.8925471 5.08421785 7.60157271 5.11648805 0.80433067 10.1354032 2.56461777 2.65969971 7.61773911 10.1576308 0.71516566	s 1, 1', 2, 3 Y 3.1814309 3.16986861 1.77028471 1.81373758 0.38629451 5.42485536 4.07144647 2.70584733 0.4142029 5.39708039 4.1025955 1.38975696 1.38523169 2.85817124 1.33716701	Z 3.95321067 3.85269205 4.47052084 4.41007872 5.0832396 5.62893389 6.10915072 6.58144592 5.0629434 5.57573234 6.17364241 7.1941462 7.12331528 6.7350069 8.07435908	Element Au Au Au Au Au Au Au Au Ag Ag Ag Ag Ag Ag Ag Ag Ag O	Ag at posit X 0.8736409 5.95257059 3.40962813 8.49716456 5.92696728 5.14572118 0.86356656 10.0831259 7.60443741 5.12325346 2.63767702 2.45851014 7.7917811 10.2049948 0.36876747	ions 1, 1', 2 Y 3.19703566 3.17344037 1.81037418 1.82205428 0.43299548 5.43784794 0.45147043 5.38635895 4.07445399 2.67465671 4.0771104 1.32046727 1.34321163 2.87907116 1.16912413	2, 2', 3, 3' ^b 3.95263819 3.90933341 4.51102812 4.42779476 5.10882933 5.60531022 4.91994914 5.57078637 6.15084852 6.66156523 6.22384556 7.17013228 7.13507316 6.722424 7.96912467	

Table 30. Continued	Table	S8.	Continued
---------------------	-------	-----	-----------

Tra	Transition structures for O2 disso								
Ag at	positions 1	l, 1′, 2, 2′, 3	3, 3′, 4, 5 ^b						
Element	Х	Y	Z						
Au	0.87954863	3.17689497	3.93673539						
Au	5.94627143	3.16400758	3.90111353						
Au	3.40792205	1.77159105	4.51513892						
Au	8.50110753	1.82227483	4.421926						
Au	5.95712794	0.39946891	5.1258796						
Au	5.17235821	5.40624772	5.59729442						
Ag	10.1264276	5.3699218	5.53751662						
Ag	0.83685354	0.41782465	4.97107413						
Ag	2.6646478	4.01200955	6.20454786						
Ag	7.6335821	4.03767913	6.14117133						
Ag	5.14965872	2.62690988	6.65714633						
Ag	2.49357494	1.25654865	7.17862414						
Ag	7.85388632	1.30265926	7.13532279						
Ag	10.2384655	2.82310109	6.66137416						
0	0.40413186	1.11119438	7.89750339						
0	1.60543333	5.84432803	6.8613397						

O adsorption, Ag at position 2^{a,b}

O at h1 ^b				O at h2 ^b				
Element	Х	Element	Х	Element	Х	Element	Х	
Au	0.87303014	Au	0.87303014	Au	0.87303014	Au	0.87303014	
Au	5.98732539	Au	5.98732539	Au	5.98732539	Au	5.98732539	
Au	3.462614	Au	3.462614	Au	3.462614	Au	3.462614	
Au	8.50907741	Au	8.50907741	Au	8.50907741	Au	8.50907741	
Au	0.75588517	Au	0.75588517	Au	0.75588517	Au	0.75588517	
Au	5.91926587	Au	5.91926587	Au	5.91926587	Au	5.91926587	
Au	5.02001836	Au	5.02001836	Au	5.02001836	Au	5.02001836	
Au	10.190469	Au	10.190469	Au	10.190469	Au	10.190469	
Au	2.50271453	Au	2.50271453	Au	2.50271453	Au	2.50271453	
Au	7.85262748	Au	7.85262748	Au	7.85262748	Au	7.85262748	
Au	2.43414322	Au	2.43414322	Au	2.43414322	Au	2.43414322	
Au	7.7485679	Au	7.7485679	Au	7.7485679	Au	7.7485679	
Au	10.2172247	Au	10.2172247	Au	10.2172247	Au	10.2172247	
Ag	5.06470731	Ag	5.06470731	Ag	5.06470731	Ag	5.06470731	
0	5.92949331	0	5.92949331	0	5.92949331	0	5.92949331	

	O adsorption, Ag at position 2′ ^{a,b}								
	0 a	at h3 ^b			0 a	nt h5 ⁵			
Element	Х	Y	Z	Element	Х	Y	Z		
Au	11.068893	3.22150884	3.94048049	Au	11.063409	3.16211888	3.94908414		
Au	6.02147563	3.18151225	3.94190586	Au	5.98192728	3.17112484	3.88656029		
Au	3.39782944	1.78864149	4.3773972	Au	3.41446101	1.77000795	4.40402109		
Au	8.58081103	1.81471264	4.40371262	Au	8.54263634	1.79114008	4.41034356		
Au	0.84874692	0.39441502	5.07258636	Au	0.78346266	0.3188299	5.06408747		
Au	5.8804682	0.36585938	5.0084422	Au	5.8968839	0.37040633	5.06374919		
Au	5.04931319	5.43091204	5.63904495	Au	5.12666381	5.42402935	5.65473406		
Au	10.3337163	5.55006206	5.69560421	Au	10.1619735	5.4011781	5.67665739		
Au	2.57417192	4.08012227	6.1475307	Au	2.55793718	4.08497803	6.12060009		
Au	7.46044949	4.19090416	6.31707955	Au	7.64611792	4.11563811	6.18317361		
Au	5.04351903	2.73643772	6.65661691	Au	5.15399135	2.77236455	6.65989973		
Au	2.64385063	1.4057347	7.0604555	Au	2.82368095	1.50832288	7.12956362		
Au	7.5281529	1.45714992	6.96490867	Au	7.60427285	1.40477837	7.02453549		
Ag	10.2645606	2.53308097	6.7201277	Ag	10.1440275	2.8104576	6.76334806		
0	9.3366904	4.45742155	7.26361264	0	0.83877222	0.85650804	7.23005407		

O at h10^b

O at fh2^b Element X

Element	Х	Y	Z	Element	Х	Y	Z
Au	11.0566773	3.18592751	3.96751272	Au	11.0141506	3.20607184	3.99078459
Au	6.02798861	3.21478199	3.94550484	Au	5.96292994	3.16914583	3.88971521
Au	3.41898732	1.82177096	4.367253	Au	3.39405778	1.8028189	4.37443549
Au	8.52440656	1.82132286	4.41885905	Au	8.50308781	1.74674428	4.41027051
Au	0.75692005	0.44109486	5.09866177	Au	0.86861337	0.33338439	5.014336
Au	5.86386769	0.34842398	5.03259617	Au	5.91566333	0.36784466	5.05160807
Au	5.04645053	5.50965293	5.65639886	Au	5.11437304	5.42834345	5.66895333
Au	10.1657378	5.47703203	5.6410579	Au	10.2793899	5.3313066	5.81900614
Au	2.50082054	4.20322258	6.15775186	Au	2.57930799	4.0736426	6.176485
Au	7.57854367	4.47201038	6.6062741	Au	7.66109191	4.11686221	6.08715599
Au	5.01783745	2.86208266	6.60443832	Au	5.05511311	2.76806808	6.64858623
Au	2.56235221	1.52656387	6.99262036	Au	2.61340155	1.39501905	7.02093893
Au	7.43270174	1.38554201	6.98400724	Au	7.39070746	1.55018191	7.12578636
Ag	10.2272651	2.81074004	6.76519394	Ag	10.1892663	2.51271855	6.71686771
0	8.35001027	2.98892712	7.95516935	0	9.13072093	0.46283071	7.36678734

O adsorption, Ag at position 2′ ^{a,b}										
	O a	t b _{1′-2′} ^b			O at	t b _{1-2′} ^b				
Element	Х	Y	Z	Element	Х	Y	Z			
Au	11.0626667	3.16392539	3.98240867	Au	0.84485455	3.15525667	3.98435746			
Au	5.9743852	3.18792915	3.86782068	Au	5.98150141	3.15943993	3.87844115			
Au	3.39553702	1.74498014	4.41649526	Au	3.40361171	1.774529	4.37369464			
Au	8.55501056	1.80107882	4.43299908	Au	8.54180257	1.76724601	4.44305522			
Au	0.7834113	0.39605346	5.07147308	Au	0.78505579	0.37445119	5.09772919			
Au	5.87963956	0.3422198	5.05667117	Au	5.89605782	0.37199175	5.10433802			
Au	5.09468347	5.48663201	5.72703903	Au	5.07662959	5.41875267	5.67375659			
Au	10.1766585	5.40932653	5.6674971	Au	10.1924912	5.39558792	5.64430732			
Au	2.55921386	4.17608466	6.10765887	Au	2.54766713	4.12452185	6.16512672			
Au	7.6257592	4.09007468	6.15200025	Au	7.63915243	4.08947332	6.08894373			
Au	5.09175452	2.75443427	6.55274672	Au	5.08235618	2.72859907	6.58574043			
Au	2.58142967	1.49467942	7.06843224	Au	2.61227101	1.42314085	7.00533591			
Au	7.55125766	1.38361322	7.01491022	Au	7.53451162	1.38469055	7.0837398			
Ag	10.0592668	2.75772025	6.86969695	Ag	10.2995303	2.75912554	6.82705234			
0	1.19541048	2.07233032	8.36859455	0	9.08770858	1.77551857	8.26014122			

O adsorption, Ag at positions 2, 3, 4 ^{a,b}											
	0 a	at h2 ^b			O a	t h10 ^b					
Element	Х	Y	Z	Element	Х	Y	Z				
Au	0.85909368	3.17770431	3.86570317	Au	0.86064597	3.15015279	3.93883481				
Au	5.99282647	3.22367033	3.97721193	Au	6.0199303	3.22381511	3.97822548				
Au	3.47607292	1.8112052	4.42856553	Au	3.45834822	1.80193123	4.3904443				
Au	8.50187184	1.81391674	4.4003975	Au	8.5281453	1.83188446	4.41035356				
Au	0.7829419	0.34462518	5.05148436	Au	0.77760438	0.39984275	5.0708366				
Au	5.92747052	0.38442116	5.0292952	Au	5.88536099	0.33342102	5.04858649				
Au	10.2232551	5.42685502	5.65539454	Au	10.1890847	5.45860554	5.57805221				
Au	2.52420139	4.0922362	6.12602146	Au	2.54396867	4.14485345	6.12380027				
Au	2.46356594	1.41332727	7.02031515	Au	2.52164874	1.45688051	7.00218395				
Au	7.71900679	1.24426423	7.03969775	Au	7.51487355	1.31862161	6.98702555				
Au	10.2127503	2.70196049	6.55913064	Au	10.3114943	2.84673478	6.75803099				
Ag	5.07268402	5.45097009	5.63166698	Ag	5.06653055	5.45290618	5.6510289				
Ag	7.71116026	4.22945154	6.29775216	Ag	7.65038726	4.23590746	6.37956829				
Ag	4.98256766	2.68688718	6.74478581	Ag	5.03932808	2.71953688	6.64402355				
0	6.83490957	2.94643494	7.85362075	0	8.57151748	2.82094952	7.96800457				

	O adsorption, Ag at positions 2, 3′, 4 ^{a,b}									
	0 a	at h2 ^b			0 a	nt h9 ⁵				
Element	Х	Y	Z	Element	Х	Y	Z			
Au	0.87381044	3.19750521	3.87828691	Au	8.51714211	4.55261778	3.34547381			
Au	5.98265383	3.20504384	3.97541994	Au	0.9287225	3.21892304	3.95631843			
Au	3.45938872	1.81919094	4.42998031	Au	5.94958087	3.17648737	3.96946327			
Au	8.51172902	1.81183685	4.39115962	Au	3.42209857	1.81959344	4.42819795			
Au	0.78136905	0.33964111	5.05255942	Au	8.53921249	1.80284809	4.36204432			
Au	5.93622106	0.39463039	5.0217631	Au	0.76566258	0.32148022	5.05937363			
Au	10.2309172	5.42122625	5.64573469	Au	5.88368051	0.40702183	5.07968909			
Au	7.71038823	4.26120881	6.27190437	Au	10.17276	5.45875925	5.65569203			
Au	2.44995156	1.39760828	7.02017644	Au	7.63285332	4.15099288	6.14355875			
Au	7.74961803	1.22875788	7.04104711	Au	2.31860268	1.40042783	6.98848814			
Au	10.2050672	2.69763572	6.56127704	Au	7.68338687	1.4541158	6.9913128			
Ag	5.09332819	5.44619198	5.62450299	Au	10.1210505	2.80362148	6.6016253			
Ag	2.53188046	4.10018822	6.1673665	Ag	5.06167577	5.45865899	5.62652026			
Ag	4.98502182	2.62472056	6.72305853	Ag	2.48372774	4.3939073	6.63992476			
0	6.86952621	3.00680286	7.79121145	Ag	5.15244562	2.75880351	6.75634367			

CO + O coadsorption, Ag at position 2^{a,b}

	O at h1	, CO at 1 ^b		O at h2, CO at 1 ^b				
Element	Х	Y	Z	Element	Х	Y	Z	
Au	0.86225796	3.17163429	3.86219879	Au	0.8709456	3.13748344	3.86797074	
Au	5.97105314	3.23237863	3.94645901	Au	5.99768926	3.19428384	3.96786228	
Au	3.43971077	1.78564256	4.41080641	Au	3.48939701	1.81407653	4.40886999	
Au	8.46945683	1.82662033	4.49564367	Au	8.4655328	1.78264459	4.52648225	
Au	0.79208185	0.40572114	5.02510033	Au	0.74921084	0.38530802	5.06237252	
Au	5.94860767	0.4566339	5.07064663	Au	5.96440773	0.42796557	5.06593941	
Au	5.05694346	5.58120831	5.74034758	Au	5.08537809	5.4825474	5.61119137	
Au	10.2231981	5.47466068	5.57789956	Au	10.1992431	5.4818587	5.57224108	
Au	2.51738848	4.1703061	6.12288303	Au	2.54777481	4.15531785	6.14590757	
Au	7.83247739	4.22620784	6.34477974	Au	7.75372421	4.20381258	6.16174536	
Au	2.42248133	1.53140997	7.05879389	Au	2.47140129	1.4511929	6.98498219	
Au	7.79389798	1.40503521	7.14622775	Au	8.15162792	1.89180316	8.48139258	
Au	10.2448833	2.814859	6.60544059	Au	10.2479093	2.81363235	6.57794831	
Ag	5.00185329	2.66292277	6.66467915	Ag	5.01667486	2.69233087	6.69876767	
С	7.47165229	1.11816932	9.07558183	С	9.30697138	0.61172956	9.25390935	
0	7.3539361	0.92540279	10.2034924	0	11.6865078	6.19796333	9.75687276	
0	6.01354715	4.50481462	7.36917341	0	6.8300047	3.20413414	7.87867567	

		CO + O c	oadsorptio	n, Ag at	position 2 ⁴	a,b		
	O at h5	5, CO at 1 ^b		TS for O shift from h1 to h2, CO at 1 ^b				
Element	Х	Y	Z	Element	Х	Y	Z	
Au	0.8629592	3.14645589	3.86717082	Au	0.86261734	3.16783987	3.85999678	
Au	5.96549356	3.17305057	3.93900927	Au	5.97112126	3.21548631	3.95334937	
Au	3.46331321	1.80101263	4.40486081	Au	3.44590008	1.79047127	4.4151991	
Au	8.47631196	1.74827248	4.49681825	Au	8.47243594	1.79782949	4.48794991	
Au	0.76905652	0.38731838	5.04857928	Au	0.77504219	0.36603973	5.04394746	
Au	5.96623853	0.34288186	5.06475085	Au	5.93181456	0.46014674	5.08225314	
Au	5.07106955	5.48696278	5.64221792	Au	5.08261714	5.47703866	5.66232631	
Au	10.203088	5.44480989	5.62231449	Au	10.2156423	5.43412597	5.57031513	
Au	2.51322147	4.17404415	6.1756179	Au	2.5233733	4.13720313	6.14726454	
Au	7.65272656	4.03239171	6.10281421	Au	7.78150172	4.22605335	6.21536324	
Au	10.1961691	2.80153307	6.56779039	Au	2.45284429	1.41316384	7.02611435	
Au	2.45979029	1.48032696	6.99022134	Au	7.81572008	1.35095414	7.13504895	
Au	7.86247549	1.35571281	8.00950521	Au	10.2681211	2.76173124	6.59282106	
Ag	4.99923843	2.92450031	6.74017219	Ag	4.94307209	2.6900735	6.68858179	
С	9.38867958	1.45486921	9.14086471	С	7.49903935	1.05454502	9.06959369	
0	10.2214408	1.45748545	9.94182709	0	7.35669947	0.84974137	10.1908589	
0	6.08631084	1.07840085	7.21754198	0	6.39242435	3.8994672	7.68426801	

CO + O coadsorption, Ag at position 2' a,b

	O at h3	, CO at 1 ^b		O at h4, CO at 1 ^b				
Element	Х	Y	Z	Element	Х	Y	Z	
Au	11.0547068	3.18010696	3.92049248	Au	11.0724237	3.18759865	3.9523431	
Au	6.015231	3.1919898	3.90331884	Au	5.97466812	3.18997086	3.85027922	
Au	3.39661379	1.7801104	4.36740938	Au	3.39329771	1.80672975	4.38796302	
Au	8.52198865	1.79309055	4.51716585	Au	8.50983479	1.77268965	4.52948383	
Au	0.84423899	0.38822534	5.08376556	Au	0.80433314	0.41272317	5.03949332	
Au	5.93012044	0.40591635	5.03633379	Au	5.91282885	0.38372981	5.09710026	
Au	5.09032185	5.44940334	5.62657754	Au	5.13786006	5.45834663	5.64940653	
Au	10.3229763	5.4859196	5.6210516	Au	10.1726136	5.43486992	5.61624151	
Au	2.60371499	4.08719682	6.12906428	Au	2.59819534	4.29006032	6.26082606	
Au	7.50265312	4.11584432	6.2259758	Au	7.64218588	4.08539552	6.12073791	
Au	5.07229126	2.73517732	6.58637626	Au	5.11202084	2.74691659	6.52697021	
Au	2.68009673	1.40901419	7.05508106	Au	2.66386776	1.26399648	7.03854885	
Au	7.59730345	1.37487192	7.14422996	Au	7.61054471	1.35964949	7.16252888	
Ag	10.3371383	2.55879691	6.71561952	Ag	10.145771	2.73378314	6.71541518	
С	7.63601187	0.95205574	9.07456806	С	7.59964259	1.15793555	9.1268829	
0	7.62188246	0.67602003	10.1904409	0	7.5850353	1.05418463	10.2730977	
0	9.33076781	4.44281357	7.25292649	0	1.82331333	3.02751691	7.81765371	

	CO + O coadsorption, Ag at position 2′ ^{a,b}									
	O at h10	0, CO at 1 ^b			O at fh2, CO at 1 ^b					
Element	Х	Y	Z	Element	Х	Y	Z			
Au	0.84494062	3.10646034	3.94341422	Au	11.0401971	3.18174431	3.96646967			
Au	6.02984769	3.1708863	3.90856514	Au	5.97352135	3.16896243	3.87843479			
Au	3.46268297	1.7767504	4.38234844	Au	3.4217991	1.7761091	4.37424584			
Au	8.51200386	1.74329953	4.5455308	Au	8.4759991	1.75318963	4.44838676			
Au	0.79181557	0.3893327	5.12872093	Au	0.83066846	0.36827466	5.02017445			
Au	5.9959665	0.40676291	5.0989265	Au	5.95547766	0.39475642	5.11099877			
Au	5.11922477	5.4625628	5.62965127	Au	5.10895994	5.46133543	5.69599014			
Au	10.2214589	5.41405328	5.55503864	Au	10.1800091	5.41303958	5.71768144			
Au	2.55819874	4.13628329	6.13570575	Au	2.51376473	4.14180315	6.16071382			
Au	7.61628858	4.11228279	6.15569105	Au	7.62355789	4.0549606	6.07712577			
Au	5.10615455	2.74480659	6.600839	Au	5.07296082	2.75771949	6.56557398			
Au	2.62541404	1.46511726	7.00768424	Au	2.57172143	1.4704746	6.99895722			
Au	7.21846921	2.00437335	8.61615414	Au	7.33742134	1.63393262	8.24917887			
Ag	10.2736646	2.72929549	6.72831016	Ag	10.1525029	2.65842036	6.68960081			
С	6.0709779	0.7098574	9.37651678	С	6.02058613	2.25047451	9.47233747			
0	7.09805998	6.29114689	9.86976726	0	5.28015994	2.59004675	10.2914937			
0	8.53233215	3.32990035	8.01562794	0	8.83251555	0.87121186	7.24658438			

Table S8. Continued

		h					h
	O at b _{1'-}	_{2′} , CO at 1 °	•	TS for (D shift from	n h3 to h10	, CO at 1 ^D
Element	Х	Y	Z	Element	Х	Y	Z
Au	11.0245276	3.14060605	3.964877	Au	11.0494664	3.15790613	3.9358461
Au	5.96735289	3.19782481	3.85362199	Au	6.03173212	3.18784089	3.91361465
Au	3.38347316	1.74641983	4.41648901	Au	3.41578622	1.78817586	4.36906146
Au	8.47995063	1.7637988	4.54219998	Au	8.52467204	1.75692287	4.55247183
Au	0.77299902	0.40581055	5.06144306	Au	0.80540964	0.38392889	5.11530798
Au	5.91252339	0.39347087	5.10376439	Au	5.9507425	0.39692726	5.06946722
Au	5.10418961	5.51751955	5.72166745	Au	5.09778191	5.44791011	5.60307293
Au	10.1643327	5.40540971	5.63238969	Au	10.2389108	5.40894632	5.63360493
Au	2.54665918	4.19409212	6.0846344	Au	2.57831487	4.11724842	6.13976904
Au	7.61091236	4.08321727	6.12101641	Au	7.52253271	4.13411623	6.22060859
Au	5.07327968	2.78470079	6.51982109	Au	5.0651914	2.73526722	6.59827077
Au	2.58104693	1.53112462	7.08525585	Au	2.66277988	1.4121175	7.02871227
Au	7.56160922	1.34115986	7.18820508	Au	7.6678286	1.35065922	7.18326246
Ag	10.1134918	2.81084763	6.81993319	Aa	10.3615966	2.64360934	6.75749636
С	7.69803161	1.12533559	9.15245312	c	7.33143784	0.66205013	9.01660271
0	7.77091627	1.00244398	10.2925525	0	7.07935803	0.22024091	10.0458859
0	1.09569025	1.92120826	8.35191628	0	8.82534392	3.73799959	7.77163099

	C	O + O coac	Isorption, A	Ag at po	sitions 2, 3	, 4 ^{a,b}	
	O at h1	, CO at 1 [♭]			O at h2	, CO at 1 [♭]	
Element	Х	Y	Z	Element	Х	Y	Z
Au	0.85548229	3.15796201	3.85868531	Au	0.86092825	3.1327093	3.8662026
Au	5.96191629	3.24092169	3.93925439	Au	6.00495264	3.21399431	3.96973888
Au	3.4394273	1.76753362	4.41997928	Au	3.50283955	1.81534146	4.42246711
Au	8.46626384	1.82592402	4.48911569	Au	8.4711155	1.78862433	4.52018707
Au	0.8056779	0.38538635	5.0363332	Au	0.76167844	0.38149193	5.06587051
Au	5.95576063	0.45144268	5.04430904	Au	5.98408303	0.4253101	5.0436673
Au	10.211317	5.44943219	5.56940196	Au	10.1910502	5.46707651	5.56451689
Au	2.49632721	4.14614664	6.0947571	Au	2.53462099	4.14644147	6.11888088
Au	2.42102966	1.5090937	7.06750494	Au	2.46076253	1.46707254	7.0033368
Au	7.77715454	1.35876428	7.12685823	Au	10.2234577	2.79323	6.56800502
Au	10.2212296	2.77723839	6.59378159	Au	8.09725575	1.9639081	8.50434952
Ag	5.0997947	5.5504208	5.76509003	Ag	5.08815766	5.48628194	5.60513123
Ag	7.77319834	4.20064929	6.29012428	Ag	7.72906637	4.18931922	6.17797623
Ag	4.98409973	2.65620114	6.65501084	Ag	5.01998355	2.64738725	6.70232176
С	7.4741201	1.1811645	9.07271848	С	9.28595293	0.70418445	9.26152821
0	7.37377401	1.05734154	10.2117653	0	11.6765466	6.29436811	9.75619022
0	5.96477662	4.40288378	7.42419137	0	6.74668368	3.24500754	7.92250612

O at h2, CO at 1' b

O at h4, CO at 1^b

Element	v	V	7	Element	Y	V	7
Liement	~	1	2	Liement	~	1	2
Au	0.85703183	3.19319282	3.84081781	Au	0.86217808	3.18164432	3.91437895
Au	5.96383635	3.2089855	3.94761315	Au	5.98226543	3.202554	3.9090474
Au	3.40427462	1.76842906	4.53305675	Au	3.42745729	1.80463164	4.40508154
Au	8.49424665	1.8166287	4.38994927	Au	8.49242985	1.80005778	4.52746875
Au	0.82404473	0.39011409	5.08590886	Au	0.82757807	0.40969588	5.01422942
Au	5.91495532	0.40506086	5.02320951	Au	5.92093095	0.38721468	5.07708736
Au	10.2446596	5.47607945	5.64563484	Au	10.1919396	5.43752023	5.58065402
Au	2.51948666	4.09838127	6.091725	Au	2.6032161	4.2543458	6.17160834
Au	2.47904456	1.40074857	7.16118095	Au	2.63796494	1.23099496	7.03763757
Au	7.7150375	1.27774141	7.03251387	Au	7.65821213	1.33087098	7.14545537
Au	10.2023298	2.74663415	6.50895672	Au	10.1345829	2.69167804	6.65463329
Ag	5.07512364	5.44148423	5.61681838	Ag	5.15141732	5.42969399	5.61075071
Ag	7.71671658	4.25568548	6.27745494	Ag	7.66874104	4.1028498	6.15940069
Ag	5.01943947	2.73012323	6.70093999	Ag	5.08356859	2.69793648	6.59345826
С	2.47496379	1.3012218	9.13846092	С	7.4357358	1.16097623	9.10066885
0	2.45185526	1.36067113	10.2878152	0	7.35834312	1.0552151	10.2451284
0	6.84807558	2.98827331	7.84985228	0	1.72853824	3.05179586	7.76182589

Table S8. Continued

	C	O + O coac	Isorption, A	Ag at po	sitions 2, 3	, 4 ^{a,b}	
	O at h7	, CO at 1′ ^b			O at fh1	, CO at 1′ ^b	
Element	Х	Y	Z	Element	Х	Y	Z
Au	0.92045604	3.19642932	3.9166433	Au	0.85653474	3.15794907	3.87593905
Au	5.94626143	3.19758689	3.92272045	Au	5.93762786	3.22421148	4.00769311
Au	3.41766616	1.78827337	4.5269945	Au	3.38608224	1.75594108	4.42726295
Au	8.50831308	1.80332598	4.36789797	Au	8.53180005	1.79177666	4.37946115
Au	0.82956334	0.41754526	5.02718097	Au	0.86380714	0.38060006	5.081568
Au	5.95002629	0.38927066	5.07452333	Au	5.97912191	0.35404413	4.9918338
Au	10.2024097	5.43709711	5.60327118	Au	10.2595309	5.41566074	5.66334769
Au	2.39818521	4.15404982	6.27670762	Au	2.54273991	4.02117656	6.05506385
Au	2.4799476	1.38483152	7.14163205	Au	2.2147742	1.45534614	8.29097408
Au	7.78714792	1.39487024	7.04150708	Au	7.71106271	1.40953975	6.99627573
Au	10.1794826	2.74045282	6.58723662	Au	10.2296502	2.7032568	6.58796268
Ag	5.16493656	5.47200676	5.61430358	Ag	5.10291221	5.44510815	5.77947498
Ag	7.69742417	4.10122811	6.14809232	Ag	7.68523866	4.10412102	6.17482105
Ag	5.21596644	2.54684859	6.70669885	Ag	5.02731054	2.54793295	6.66171071
С	2.54121531	0.89806751	9.056678	С	0.84304625	1.99864781	9.48517942
0	2.55703022	0.5744913	10.1595055	0	10.2932694	2.28065154	10.299766
0	4.22119594	4.38477795	7.30662554	0	3.76386542	0.75827955	7.33083867

O at h2, O at h7, CO at 1' b

Element	Х	Y	Z
Au	0.90128813	3.19631485	3.88855788
Au	5.95466945	3.20493309	3.94964093
Au	3.4164139	1.81536616	4.55233531
Au	8.48548557	1.820489	4.37353761
Au	0.82282283	0.38992508	5.01365577
Au	5.94283745	0.4111119	5.04175239
Au	10.2372919	5.43580942	5.60001225
Au	2.38231517	4.08386733	6.27392743
Au	2.47938576	1.33118155	7.16491608
Au	7.82937348	1.21650381	7.05019087
Au	10.1947078	2.67414088	6.52723037
Ag	5.1647532	5.47418153	5.5757651
Ag	7.74282426	4.20928754	6.24826334
Ag	5.13722868	2.5471612	6.76904432
С	2.49572199	0.78070078	9.06784363
0	2.50139804	0.42648001	10.1605221
0	4.14957308	4.50050668	7.27120425
0	7.04356818	2.91530693	7.88737561

 a Calculated using the (2×1) surface unit cell. b For labeling of atom positions see main text, Figs. 1 and 11.