Supplementary Information to:

Mechanistic and Spectroscopic Identification of initial Reaction Intermediates for Prenal Decomposition on a Platinum Model Catalyst

J. Haubrich^{a,b*}, D. Loffreda^c, F. Delbecq^c, P. Sautet^c, Y. Jugnet^d, A. Krupski^e, C. Becker^a, K. Wandelt^a

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

Table 1. Vibrational analysis of the dehydro- η^3 -tri σ (CCC)-prenal-H1 species on Pt(111) (coverage 1/9 ML). The letters following the computed intensities refer to the relative strength, i.e. (v)w = (very) weak, m = medium and (v)s = (very) strong. The coupling of different vibrations is indicated by (+) (in phase) and (-) (anti-phase movement). The abbreviations fR and fT refer to frozen rotations and translations, respectively.

Number	Normal Mode	ω [cm ⁻¹]	Intensity	Rel. Intensity
1	v(C4-H2)	3042	1.2E-08	
2	v(C5-H5)	3030	5.3E-09	
3	v _{as} (C4-H3,4)	3004	1.7E-07	
4	v(C2-H1)	2958	1.3E-07	
5	v _{as} (C5-H6,7)	2949	5.7E-07	
6	$v_s(C4H_3)$	2928	1.8E-07	
7	v _s (C5H ₃)	2879	1.5E-08	
8	v(C1=O)	1718	1.1E-05	S
9	$\delta_s'(C4H_3\text{-}C5H_3)$	1429	6.5E-07	
10	δ_s "(C4H ₃ -C5H ₃)	1421	7.0E-08	
11	$\delta_{as}"(C4H_3\text{-}C5H_3)$	1403	4.6E-08	
12	$\delta_{as'}(C4H_3-C5H_3)$	1394	2.4E-07	
13	$u_s(C4H_3-C5H_3)$	1351	4.7E-07	
14	u _{as} (C4H ₃ -C5H ₃)	1332	9.9E-09	
15	δ(C2H1)	1209	1.0E-07	
16	v(C2=C3)	1160	5.7E-08	
17	v _{as} (C3C4-C3C5)	1105	1.5E-08	
18	γ _s "(C4H ₃ -C5H ₃)	1042	3.8E-06	m
19	v(C1-C2)	972	1.7E-07	
20	$\gamma_{as}'(C4H_3-C5H_3)$	953	9.8E-07	W
21	γ(C2H1)	915	5.6E-07	
22	γ_{as} "(C4H ₃ -C5H ₃)	907	7.5E-08	
23	$\gamma_{s}'(C4H_{3}-C5H_{3})$	892	4.2E-08	
24	v _s (C3C4-C3C5)	763	1.8E-06	m
25	$v_{as}(PtC1-PtC2)$	640	4.8E-06	S
26	δ(C1-C2=C3)	552	1.2E-07	
27	v _s (PtC1-PtC2)-v(PtC3)	503	4.7E-10	
28	$v_s(PtC1-PtC2)+v(PtC3)$	435	3.5E-06	m
29	δ(C2=C3,4,5)	403	2.3E-07	
30	δ(C3-C4,5)	346	4.7E-07	
31	$\tau_s(CH_3)$	283	5.3E-08	
32	τ(C2=C3)	267	1.5E-06	W
33	$ au_{as}(CH_3)$	245	2.6E-07	
34	τ(C1-C2)	229	4.1E-07	
35	ω(C2=C3,4,5)	220	3.6E-07	
36	δ(O=C1-C2)	183	3.0E-07	
37	fT	126	2.1E-09	
38	fT	91	2.9E-07	
39	fR	56	1.1E-08	

5

Supplementary Material (ESI) for PCCP This journal is $\textcircled{\mbox{\scriptsize C}}$ the Owner Societies 2011

Number	Normal Mode	ω [cm ⁻¹]	Intensity	Rel. Intensity
1	v _s (C3H2-C4H5)	3033	1.6E-08	
2	v _{as} (C3H2-C4H5)	3031	5.2E-11	
3	v _{as} (C3-H3,H4)	2978	2.4E-07	
4	$v_{as}(C4-H6,H7)$	2975	1.1E-07	
5	v(C1-H1)	2949	5.8E-09	
6	$v_{s}(C3H_{3})+v_{s}(C4H_{3})$	2916	1.6E-07	
7	$v_{s}(C3H_{3})-v_{s}(C4H_{3})$	2912	6.6E-09	
8	δ_s "(C3H ₃ -C4H ₃)	1424	3.1E-07	
9	$\delta_{s}'(C3H_{3}-C4H_{3})$	1421	7.9E-08	
10	δ_{as} "(C3H ₃ -C4H ₃)	1403	1.9E-10	
11	$\delta_{as}'(C3H_3-C4H_3)$	1397	4.7E-10	
12	$u_s(C3H_3-C4H_4)$	1344	1.1E-07	
13	$u_{as}(C3H_3-C4H_3)$	1324	1.3E-08	
14	v(C1-C2)	1197	3.2E-08	
15	v _{as} (C2C3-C2C4)	1106	2.6E-09	
16	δ(C1H1)	1077	7.9E-07	m
17	γ _s "(C3H ₃ -C4H ₃)	1026	2.2E-06	S
18	$\gamma_{as}'(C3H_3-C4H_3)$	956	1.1E-08	
19	γs'(C3H ₃ -C4H ₃)	931	6.7E-09	
20	γ _{as} "(C3H ₃ -C4H ₃)	901	1.4E-09	
21	v _s (C2C3-C2C4)	802	8.6E-07	m
22	γ(C1H1)	697	8.9E-09	
23	v _s (Pt1C1-Pt2C1)-v(Pt3C2)	592	8.5E-07	m
24	$v_{as}(Pt1C1-Pt2C1)$	520	7.4E-09	
25	$v_s(Pt1C1-Pt2C1)+v(Pt3C2)$	456	2.6E-06	S
26	δ(C2-C3-C4)	377	1.9E-09	
27	τ(C1-C2)	280	6.9E-09	
28	δ(C1-C2-C3,C4)	258	2.1E-07	
29	$\tau_{s}(C3H_{3})$	232	6.8E-08	
30	$\tau_{as}(C3H_3)$	202	3.0E-07	
31	fR	157	4.0E-08	
32	fT	149	2.1E-07	
33	fR	117	4.1E-09	

Table 2. Vibrational analysis of the η^2 -isobutenyl species on Pt(111) (coverage 1/9 ML). The harmonic frequencies ω are given in cm⁻¹.

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

Number	Normal Mode	ω [cm ⁻¹]	Intensity	Rel. Intensity	HREELS ^a	HREELS ^b
1	$v_{as}(C3-H2,4)$	3041	1.5E-07			
2	$v_{as}(C4-H5,7)$	3038	7.3E-08		3017	
3	$v_{as}(C3-H3,4)$	3035	1.6E-07		2953	2970 (v _{as} (CH ₃))
4	$v_{as}(C4-H6,7)$	3032	1.4E-08			
5	v _s (C3H ₃)	2963	1.4E-07		2875	2880 (v _s (CH ₃))
6	v _s (C4H ₃)	2959	3.0E-08			
7	v(C2-H1)	2929	3.3E-08			
8	$\delta_s"(C3H_3\text{-}C4H_3)$	1452	4.8E-07	VW	1452	1460 (δ _{as} (CH ₃))
9	$\delta_{s}'(C3H_{3}-C4H_{3})$	1440	1.2E-09			
10	δ_{as} "(C3H ₃ -C4H ₃)	1429	7.5E-10			
11	$\delta_{as}'(C3H_3-C4H_3)$	1427	1.3E-09			ca 1400 (\delta _s (CH ₃))
12	u _s (C3H ₃ -C4H ₃)	1359	1.1E-08		1367	
13	$u_{as}(C3H_3-C4H_3)$	1336	1.6E-09		1327	
14	δ(C1H1)	1252	3.4E-08			1280 (δ(CH))
15	γ(C1H1)	1251	3.0E-10			
16	γ_s "(C3H ₃ -C4H ₃)	1149	1.1E-09			
17	v _{as} (C2-C3,C2-C4)	1070	1.7E-11			
18	γ _s '(C3H ₃ -C4H ₃)	1064	1.5E-07		1028	1080, 1010, 800
19	v(C1-C2)	965	3.1E-06	S	965	(coupled $v(CC)$
20	γ _{as} '(C3H ₃ -C4H ₃)	937	1.1E-09			and $\gamma(CH_3))$
21	γ_{as} "(C3H ₃ -C4H ₃)	901	3.3E-11			
22	v _s (C2-C3,C2-C4)	831	7.2E-09		797	
23	v(Pt1C-Pt2C+Pt3C)	562	3.6E-11		585	645 (v(CPt),
24	v(Pt1C+Pt2C-Pt3C)	554	4.5E-09		460	δ(CCC))
25	v(Pt1C-Pt3C-Pt2C)	418	1.3E-07		405	440 (v(CPt))
26	δ(C2-C3-C4)	376	4.4E-09			
27	$\tau_{s}(CH_{3})$	251	1.4E-08			
28	δ(C1-C2-C3,C4)	242	5.7E-08			
29	$\tau_{as}(CH_3)$	225	1.6E-08			
30	τ(C1-C2)	220	3.3E-07			
31	fT	125	2.8E-07			
32	fT	104	1.2E-08			
33	fR	54	5.6E-10			

Table 3. Vibrational analysis of the	η^1 -isobutylidyne bonded in a threefold hollo	ow site on Pt(111) (coverage 1/9 ML).
--------------------------------------	---	---------------------------------------

^a Actual work, 4.9L prenal annealed to 440 K.

^b From Ref. ¹.

5

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

Number	Normal Mode	$\omega [cm^{-1}]$	Intensity	Rel. Intensity	HREELS ^a	HREELS ^b
1	ν(CH)	3024	2.8E-08	m	2964	2970
2	$v_{as}(Pt_3C)+fT$ (degenerate)	778	1.3E-08	W	796	800
3	$v_{s}(Pt_{3}C)$	610	0		643	640
4	$fT+v_{as}(Pt_3C)$ (degenerate)	473	4.0E-09		465	

Table 4. Vibrational analysis of the η^1 -methylidyne bonded in a threefold ho	ollow site on Pt(111) (coverage 1/4 ML).
---	--

^a Actual work, 4.9L prenal annealed to 440 K.

^b From Ref. ¹.

5

Figure 1. Comparison of the computed HREEL spectra of the four identified surface intermediates during prenal decomposition on Pt(111). See the Computational Details Section of a description of the theoretical vibrational simulations.

Notes and references

^a Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, D-53115 Bonn, Germany, Fax: +49-228-73-2515; Tel: +49-228-10 73-2253; E-mail: janh@pc.uni-bonn.de

^b Dept. of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA

^c Université de Lyon, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon and CNRS, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France

^d Institut de Recherche sur la Catalyse et l'Environnement de Lyon UMR5256 CNRS-Université Lyon 1, 2 avenue A. Einstein, F-69626 Villeurbanne, France

15 e Institute of Experimental Physics, University of Wroclaw, pl. Maxa Borna 9, PL 50-204 Wroclaw, Poland

1. N. R. Avery and N. Sheppard, Proc. R. Soc. Lond. A, 1986, 405, 1.