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Supplementary data 

to the article “Time-resolved CIDNP: an NMR way to determine the EPR parameters of elusive 

radicals” by Olga B. Morozova, Konstantin L. Ivanov, Alexey S. Kiryutin, Renad Z. Sagdeev,  

Talea Köchling, Hans-Martin Vieth, Alexandra V. Yurkovskaya 

 

To get an idea on the applicability of the simple proportionality relation between CIDNP 

intensities and HFCCs we performed numerical simulations assuming different numbers of magnetic 

nuclei in the system and an analytical treatment of the problem under consideration. 

Numerical simulations of CIDNP at high fields 

To obtain an idea on the validity and applicability range of the proportionality relation, at first, we 

performed numerical calculations of CIDNP in radical pairs with different numbers of magnetic 

nuclei. To check the proportionality relation we ran simulations for different numbers of magnetic 

nuclei of in radical pairs and assumed that the HFCCs took random values in the range of [–1 mT; 1 

mT] and varied the number of nuclei, N. The value of δ was varied in a wide range, so that the 

situations of comparable HFCC and δ=ΔgμBB terms and δ>>HFCC term were also covered by our 

treatment. For the calculations Adrian’s model (see main text of the article) was used. 

The results of the calculation are presented in Figure S1. We plotted the calculated CIDNP values 

versus the randomly taken HFCCs and also performed fitting by a linear function CIDNP=C⋅HFCC. 

It is clearly seen that for small N (namely, for 3 and 4) the deviations from proportionality are so 

large that obviously the simple relation CIDNP∝HFCC is not fulfilled. However, as N becomes 

larger the accuracy of the relation becomes noticeably higher: at N=6 the coefficient of 

determination is 0.97 for the proportionality relation. The coefficient of determination is roughly 

equal to unity minus square of the deviation, S2, thus, R2=0.99 corresponds to roughly 10 % 

deviation; whereas R2=0.9999 gives only 1% of deviation. At N=10 the proportionality relation 

CIDNP=C⋅HFCC already very well describes the dependence. If a different set of random HFCC 

values is taken the same tendency is seen: for small N no proportionality exists, for N>5 the 

proportionality relation becomes quite accurate, whereas for N>10 it is perfectly fulfilled. 
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Figure S1. Calculated dependencies of high-field CIDNP of HFCC for 3 (a), 4 (b), 6 (c) and 10 (d) 

magnetic spin 1/2 nuclei. The HFCCs take random values in the range [–1 mT;1 mT], δ=0.5 mT. 

Solid lines show the best fits with linear functions ii CaP = ; coefficients of determination, R2, are 

given for all subplots. 

Figure S2 shows the coefficients of determination, R2, for the proportionality relation for different 

numbers of nuclei N and different values of the parameter ΔgμBB/amax, for each N and  ΔgμBB/amax 

ten different random sets of HFCCs were taken. Apparently, the relation becomes valid not only 

when � is large but also with an increasing number of nuclei. For instance, once N=10 the relation 

works well even for � values, which are smaller than amax and much smaller than the total HFC of all 

nuclei (width of the EPR spectrum of the radical pair). The solid lines modeling the CIDNP 

dependence on the number of nuclei and the value of δ are discussed later in the text. 

Keeping in mind the fact that in CIDNP experiments the accuracy of determining the net CIDNP 

is often not better than 5 %, we conclude that even the data obtained for N>5 can be used for the 

proportionality relation between CIDNP and HFCCs. Thus, this simple analysis indicates that the 

relation is fulfilled for a sufficiently large number of nuclei or, alternatively, for a large � term, which 

is a rather unusual situation for pairs of organic radicals. However, its origin and precision are still 

open as it does not follow obviously from the general expressions, eqs. (1-3), because the HFC terms 

do not contribute linearly to the result for CIDNP. Moreover, for a small number of nuclei even 
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Kaptein’s rules for the CIDNP sign may break down as it is known from the work by Salikhov 1. To 

clarify these questions let us tackle the problem analytically. 
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Figure S2. Dependence of the coefficient of determination, R2, for the proportionality relation on the 

parameter ΔgμBB/amax as calculated for different number of magnetic nuclei, N, in the radical pair. 

Method of calculation is the same as for Figure S1; for each N and ΔgμBB/amax value ten random 

HFC configurations were taken. Solid lines represent function 21 Sα−  with S2(x,N) taken from eq. 

(S6). 

Analytical considerations of CIDNP in multi-nuclear systems at high magnetic fields 

Let us obtain analytically the criterion for proportionality and derive deviations from this relation. 

To do so, let us present the rate of inter-system crossing in the same way as in eq. (4) 

( ) ( )111'11 2
1,...,;,..., AMaMMMM NN ++= δω       (S1) 

with A1 being the HFC term of the set }',,1;,,2{ NN KK  of nuclei (all nuclei except for the first one); 

similarly, Ai is the HFC term of all nuclei except for the i-th one: 

j
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         (S2) 

Let us assume for the moment that |a1M1|<<|δ+A1|. The limits of such assumption will be established 

later. In this approximation the expression for P1 can be rewritten as follows: 
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Here summation is taken over all A1 values, i.e., over the states of }',,1;,,2{ NN KK  nuclei. Thus, if 

for a given state |a1M1|<<|δ+A1| this state will give a contribution to P1, which is proportional to a1. 

This is the origin of the sought proportionality relation. However, there are still a few points that 

need to be clarified, namely, the validity of the approximation used in eq. (S3) and under what 

conditions Ci=C for any i. 

The inequality |a1M1|<<|δ+A1| is obviously fulfilled when the δ term is much larger than the HFC 

term, as has been shown earlier 2. In this case the Taylor series expansion can be used with the small 

parameter being (a1M1+A1)/δ, which rather obviously leads to CIDNP∝HFCC. A similar situation is 

met if there is a nucleus in the spin system with a HFCC that is much larger than the rest of the HFC 

term. Then for all other nuclei proportionality ( ii aP ∝ ) is expected. However, from our previous 

study3  and the preceding numerical analysis it is known that the relation ii aP ∝  has a much broader 

applicability range. Let us consider the problem in more detail restricting it to the same situation as 

in the numerical modeling of CIDNP. The HFCCs, ai and bj, are assumed to take random values 

from maxa−  to maxa . In the situation chosen we will compare the HFCC, ai, of an individual nucleus 

with the effective HFCC of all other nuclei, Ai, and find out under what conditions ai<<Ai holds and 

the coefficients Ci coincide. The term Ai defined in eq. (S2) is a random quantity and its normalized 

distribution, f(Ai), is Gaussian in accordance with the central limiting theorem (distribution of N+N'–

1 independent random quantities): 
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Here 3/2
max

2 a=σ  is the dispersion of the distribution of the quantity aiMi. The approximation used 

in eq. (S3) cannot be fulfilled for all possible Ai values in the distribution f(Ai), namely, it is violated 

for those Ai that |a1M1|>|δ+A1|, otherwise it is valid. Thus, for rather small δ values there are always 
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Ai values, for which equation (S3) breaks down. The problem of justifying the proportionality 

relation thus transforms into the task of elucidating under what conditions the statistical weight of 

the events |aiMi|>|δ+Ai| is small enough. Indeed, if such weight is sufficiently small then iii aCP =  

holds, moreover, Ci=Cj=C for any i and j, and the proportionality between CIDNP and HFCC is 

fulfilled with high accuracy. The weight of “unwanted” Ai values (so that |aiMi|>|δ+Ai|) is given by 

integration of the distribution f(Ai) from eq. (S4) from )2/( ia−−δ  to )2/( ia+−δ . This integral can 

be roughly estimated as the area of the corresponding trapezoid: 
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The condition S<<1 guarantees the proportionality between the CIDNP of the nucleus and its 

HFCC at the radical stage of the reaction: ii CaP = . More generally, for arbitrary HFCCs the simple 

relation ii CaP =  holds if 1)( <<−=⋅ δii Afa  (which is approximately the integral of )( iAf  from 

)2/( ia−−δ  to )2/( ia+−δ ). The square of the deviation from proportionality is given by S2. If we 

assume that ai and amax are of the same order of magnitude then approximately 
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where max/ ax δ= . The function given by eq. (S6) well describes the deviations from proportionality 

presented in Figure S2. As it is seen, the solid lines representing the dependence 22 1 SR ⋅−= α  (α is 

the coefficient used here as the fitting parameter) are in good agreement with the data of the 

numerical “experiment”. 

The value of the weight of “unwanted” HFC configurations is illustrated by Figure S3. This 

weight is given by the area of the shaded part of the normalized Gaussian f(Ai). To ensure small area 

of this part either � should be small (integration is performed over the far wings of the distribution) 

or the width of the Gaussian should be much larger than the individual HFCCs. For fixed N+N' the 

deviation decreases exponentially with increasing x2. However, even if |x|<1 (i.e., δ is smaller than or 

comparable to amax) a large number of nuclei, N+N', may make the deviation from the 
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proportionality ii CaP =  small. Roughly speaking, with increasing N+N' and small x values the 

deviation S2 decreases as ( )1'/1 −+ NN . In general, the proportionality relation is fulfilled for every 

nucleus, whose HFCC is much smaller than the total width of the EPR spectrum of the rest of the 

nuclei. Fulfilling this condition guarantees the proportionality relation. 
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Figure S3. Normalized Gaussian distribution, f(Ai), of the Ai term illustrating the weight of 

“unwanted” HFC configurations for different number of magnetic nuclei in the system. Shaded area 

shows the part of the distribution corresponding to the unwanted spin configurations. 

 

Correlation of the CIDNP intensities of TCBP with the known HFCCs of the anionic radicals 

of TCBP for different reactants 

For testing the theory and for determination of HFCCs of different radical the geminate CIDNP 

spectra were obtained during photoreactions of 3,3′,4,4′-tetracarboxybenzophenone (TCBP) with 

different quenchers, namely, L-tyrosine, L-tryptophan, L-histidine, methionine-glycine, N-acetyl 

tyrosine, and N-acetyl tryptophan (the data for N-acetyl derivatives were not included into the main 

manuscript; here, they are used for additional illustration). The plotted CIDNP intensities of TCBP 

signals versus the known HFCCs for TCBP anion radical give linear dependencies (shown in Figure 

S4) which are assembled into two columns: the one on the left hand side represents the data with 

coefficients of determination, R2 of 0.999 or higher (plots a, b, c). The data in the column on the 

right hand side have R2 of 0.99 and lower (plots d, e, f), with a characteristic pattern in the plot. The 

first group was obtained for the photoreaction of TCBP with L-tryptophan and its N-acetyl 

derivative, and with the peptide Met-Gly, for which the mechanism of quenching of triplet excited 

states is electron transfer.4, 5, 6 Therefore, for these quenchers the formation of the TCBP radical 

anion was established, which was confirmed by the very high coefficient of determination in the 

dependencies of CIDNP on the known HFCCs of the TCBP radical anion. For tyrosine and histidine, 
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which refer to the second group of the data obtained, under our experimental conditions the 

mechanism of triplet quenching is hydrogen transfer.6-8 In our case, this reaction mechanism leads to 

the formation of the TCBP ketyl radical, which is likely to have HFCCs different from those in the 

TCBP radical anion. Thus, comparing the plots from the left column (a, b, c) and from the right 

column (d, e, f) we conclude that the latter refer to the TCBP ketyl radical. The HFCCs for this 

radical were determined using the known HFCCs of the tyrosyl radical, and are listed in Table I of 

the manuscript. 
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Figure S4. Correlation of the geminate 1H CIDNP intensities of 3,3´,4,4´-tetracarboxybenzophenone 

(TCBP) in the photoreaction of TCBP and L-tryptophan (a), L-methionine-L-glycine (b), N-acetyl 

tryptophan (c), L-tyrosine (d), L-histidine (e), and N-acetyl tyrosine (f) with the HFCCs of the 

protons of the TCBP radical anion. Solid lines - the best fit by the function jj CbP −= . 
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