The structure of host-guest complexes between dibenzo-18-crown-6 and water, ammonia, methanol, and acetylene -Evidence of molecular recognition on the complexation-

Ryoji Kusaka, Satoshi Kokubu, Yoshiya Inokuchi, Takeharu Haino,

and Takayuki Ebata*

Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima

739-8526, Japan

Supporting Information

Calculated results (M05-2X/6-31+G*)

DB18C6 and DB18C6-H₂O

Optimized geometries	S3
IR spectra	S4
S_1 - S_0 and S_2 - S_0 transition energy	S5
DB18C6-NH ₃ built on II and IV conformations	
Optimized geometries	S6
IR spectra	S7
DB18C6-CH ₃ OH	
Optimized geometries	S 8
IR spectra	S9

$DB18C6-C_2H_2$	
Optimized geometries	S10
IR spectra	S11
boat-(NH ₃) n (n =1-3) and boat-H ₂ O-NH ₃	
Optimized geometries	S12
IR spectra	S13
S ₁ -S ₀ electronic transition energies of complexes	S14

Fig. S1. Optimized structures of (a) DB18C6 and (b) DB18C6-H₂O at higher energy.

Fig. S2. IR spectra of m1, m2 and a and calculated IR spectra of DB18C6 and DB18C6-H₂O in the CH stretching energy region.

Fig. S3. (a) LIF spectrum of bare DB18C6 and DB18C6-H₂O. (b) Calculated S_1 - S_0 and S_2 - S_0 electronic transition energies of DB18C6 and DB18C6-H₂O.

Fig. S4. Optimized structures of DB18C6-NH₃ built on (a) II and (b) IV conformations.

Fig. S5. Calculated IR spectra of DB18C6-NH₃ built on **II** and **IV** conformations in the region of (a) CH and (b) NH stretching vibrations.

Fig. S6. Optimized structures of DB18C6-CH₃OH built on (a) II, (b) IV, and (c) boat conformations.

Fig. S7. Calculated IR spectra of DB18C6-CH₃OH in the region of (a) CH and (b) NH stretching vibrations.

Fig. S8. Optimized structures of $DB18C6-C_2H_2$ built on (a) II, (b) IV, and (c) boat conformations.

Fig. S9. Calculated IR spectra of DB18C6- C_2H_2 in the region of (a) methylene and (b) acetylene CH stretching vibrations.

Supplementary Material for PCCP This journal is © The Owner Societies 2011

Fig. S10. Optimized structures of boat- $(NH_3)_n$ with (a) n=1, (c) n=2, (d) n=3, and (b) boat- H_2O-NH_3

Fig. S11. Calculated IR spectra of boat- $(NH_3)_n$ with n=1-3 and boat- H_2O-NH_3 in the region of the (a) CH and (b)-(d) NH stretching vibrations.

Fig. S12. Calculated S_1 - S_0 electronic transition energies of DB18C6 complexes with (a) NH₃, (b) CH₃OH, and (c) C₂H₂.