Electronic supplementary information (ESI)

Quantifying the Anisotropy of Intermolecular Potential Energy Surfaces: a Critical Assessment of Available N₂-N₂ Potentials

M. H. Karimi-Jafari*, M. Ashouri

Computational chemistry laboratory, NSTRI, Tehran, Iran, E-mail: mhkarimijafari@gmail.com

R/au	AWJ	AWJ-scaled	CVPHD	ABCCP	KMS	GBCBCP	CPBGB
4.5	27013.2	26864.0	28448.8	19264.2	29742.2	16617.2	30957.5
4.75	17216.3	16561.0	17514.2	12119.4	17852.2	11049.2	16934.0
5	10845.7	10067.4	10637.5	7551.5	10639.6	7201.2	9341.6
5.5	4129.1	3523.2	3723.1	2805.1	3654.2	2841.8	2831.1
6	1450.0	1093.4	1160.9	933.1	1151.4	975.1	786.4
6.5	433.3	248.9	270.3	229.8	287.9	242.4	146.3
7	75.3	-12.7	-6.9	-10.2	12.2	-11.4	-38.6
7.5	-34.0	-73.5	-72.9	-74.2	-60.2	-78.5	-77.1
8	-55.7	-72.7	-73.5	-76.8	-67.1	-80.8	-72.1
8.5	-50.6	-57.6	-58.7	-62.1	-56.3	-65.6	-57.4
9	-39.7	-42.5	-43.5	-46.0	-43.3	-48.9	-43.1
10	-21.7	-22.1	-22.8	-27.6	-23.9	-25.5	-23.3
12	-6.7	-6.7	-7.0	-7.2	-7.7	-7.6	-7.3

TABLE S1. Isotropic component of interaction energy (in cm⁻¹) obtained from available analytical N_2 - N_2 potentials¹⁻⁶.

TABLE S2. Angular spreadness of interaction energy (in cm^{-1}) obtained from available analytical N₂-N₂ potentials¹⁻⁶.

R	AWJ	AWJ-scaled	CVPHD	ABCCP	KMS	GBCBCP	CPBGB
4.5	24350.5	24405.3	25574.3	14942.8	32797.4	13726.4	10880.7
4.75	15728.5	15316.4	16016.4	9086.9	19848.7	9285.7	6264.3
5	10094.1	9542.2	9957.7	5530.0	11999.8	6295.3	3676.2
5.5	4075.9	3618.1	3760.3	2050.6	4366.1	2808.0	1322.1
6	1598.9	1323.5	1370.1	759.4	1573.3	1186.8	493.6
6.5	605.8	462.2	476.6	279.3	557.9	468.4	187.6
7	219.5	151.4	155.5	101.2	193.1	169.6	72.4
7.5	75.1	46.1	47.1	36.2	65.9	55.6	30.4
8	24.9	16.3	16.4	14.0	25.3	20.4	16.6
8.5	10.7	10.7	10.7	7.7	14.7	14.0	11.9
9	7.5	8.4	8.4	5.9	11.0	11.4	9.2
10	4.5	4.7	4.7	3.8	6.5	6.5	5.5
12	1.5	1.5	1.5	1.5	2.4	2.0	2.1

R	AWJ	AWJ-scaled	CVPHD	ABCCP	KMS	GBCBCP	CPBGB
4.5	2.50	2.48	2.48	1.56	3.04	4.62	1.07
4.75	2.48	2.48	2.47	1.56	3.02	3.63	1.11
5	2.48	2.48	2.48	1.56	3.01	3.04	1.15
5.5	2.50	2.53	2.52	1.57	3.00	2.62	1.29
6	2.57	2.64	2.63	1.61	3.04	2.67	1.51
6.5	2.71	2.86	2.85	1.71	3.18	2.93	1.86
7	2.99	3.32	3.29	1.92	3.47	3.42	2.29
7.5	3.49	3.98	3.97	2.24	3.78	4.03	2.19
8	3.84	2.27	2.33	2.03	2.61	2.00	0.86
8.5	1.46	-0.02	-0.01	0.48	0.32	-0.15	0.08
9	-0.07	-0.15	-0.15	-0.07	-0.15	-0.19	-0.05
10	-0.16	-0.15	-0.15	-0.07	-0.18	-0.19	-0.06
12	-0.18	-0.18	-0.18	-0.07	-0.19	-0.18	-0.08

TABLE S3. Angular skewness of interaction energy obtained from available analytical N_2 - N_2 potentials¹⁻⁶.

TABLE S4. Angular peakedness of interaction energy obtained from available analytical N_2 - N_2 potentials¹⁻⁶.

R	AWJ	AWJ-scaled	CVPHD	ABCCP	KMS	GBCBCP	CPBGB
4.5	11.03	10.91	10.86	5.22	14.78	42.08	3.94
4.75	10.89	10.83	10.78	5.22	14.62	26.92	4.06
5	10.82	10.83	10.78	5.23	14.49	18.52	4.21
5.5	10.89	11.06	11.00	5.29	14.38	12.47	4.64
6	11.27	11.71	11.63	5.44	14.62	12.08	5.39
6.5	12.13	13.13	13.02	5.79	15.51	13.61	6.70
7	13.91	16.27	16.09	6.59	17.56	17.07	8.71
7.5	17.52	22.09	21.94	8.14	20.41	22.81	9.08
8	21.56	13.60	13.98	8.48	14.79	12.48	4.41
8.5	8.87	2.22	2.23	3.73	3.46	2.05	2.10
9	2.12	1.93	1.93	2.05	1.93	1.96	1.86
10	1.91	1.92	1.92	1.90	1.88	1.92	1.87
12	1.87	1.87	1.87	1.88	1.87	1.89	1.86

D/au	MP2			CCSD(T)			
N/au	aDZ	aTZ	aTZ+b	aDZ	aTZ	aTZ+b	
4.50	19112.6	17991.3	17825.9	19634.6	18493.8		
4.75	12951.0	12123.1		13431.6			
5.00	8513.1	7913.6	7805.1	8905.2	8294.9		
5.50	3397.9	3101.4	3029.9	3626.2			
6.00	1197.9	1057.7	1012.1	1326.9	1181.8		
6.50	333.1	265.8		407.4			
7.00	28.1	-6.3	-22.3	72.6	36.9		
7.50	-59.9	-79.1	-88.2	-32.0	-51.7	-61.1	
8.00	-71.9	-83.2	-88.4	-53.6	-65.0	-70.5	
8.50	-61.6	-68.4	-71.5	-49.2	-55.8	-59.1	
9.00	-47.7	-51.8		-39.0	-42.8		
10.00	-26.4	-27.8	-28.5	-21.7			
12.00	-8.4	-8.7		-6.8	-7.0		

TABLE S5. Isotropic component of interaction energy (in cm^{-1}) of N₂-N₂ at different levels of *ab initio* calculations.

TABLE S6. Angular spreadness of interaction energy (in cm^{-1}) of N₂-N₂ at different levels of *ab initio* calculations.

D/au	MP2			CCSD(T)			
K∕au	aDZ	aTZ	aTZ+b	aDZ	aTZ	aTZ+b	
4.50	12798.2	12352.3	12316.3	12693.1	12209.9		
4.75	9919.6	9566.4		9993.1			
5.00	7124.6	6846.5	6827.3	7233.5	6938.3		
5.50	3280.2	3124.1	3111.9	3346.5			
6.00	1383.3	1308.1	1298.9	1416.4	1332.4		
6.50	546.0	513.8		562.1			
7.00	201.6	189.2	185.8	209.5	194.2		
7.50	69.8	65.7	64.0	73.5	67.8	65.8	
8.00	25.4	24.7	24.4	26.4	24.8	24.3	
8.50	14.2	14.7	15.0	13.4	13.7	14.0	
9.00	10.8	11.4		9.8	10.3		
10.00	6.4	6.6	6.8	5.7			
12.00	2.2	2.3		2.0	2.0		

D/au	MP2			CCSD(CCSD(T)				
R/au	aDZ	aTZ	aTZ+b	aDZ	aTZ	aTZ+b			
4.50	1.66	1.67	1.68	1.59	1.61				
4.75	2.17	2.22		2.14					
5.00	2.36	2.42	2.42	2.34	2.41				
5.50	2.52	2.58	2.59	2.48					
6.00	2.66	2.72	2.73	2.61	2.67				
6.50	2.88	2.94		2.80					
7.00	3.27	3.32	3.37	3.14	3.21				
7.50	3.78	3.80	3.83	3.62	3.68	3.73			
8.00	2.99	2.62	2.37	3.27	2.93	2.69			
8.50	0.31	0.13	0.04	0.72	0.34	0.18			
9.00	-0.17	-0.17		-0.14	-0.17				
10.00	-0.15	-0.15	-0.14	-0.18					
12.00	-0.17	-0.17		-0.18	-0.19				

TABLE S7. Angular skewness of interaction energy of N₂-N₂ at different levels of *ab initio* calculations.

TABLE S8. Angular peakedness of interaction energy of N_2 - N_2 at different levels of *ab initio* calculations.

D/au	MP2			CCSD(1	CCSD(T)			
K/au	aDZ	aTZ	aTZ+b	aDZ	aTZ	aTZ+b		
4.50	6.41	6.48	6.49	6.10	6.17			
4.75	9.63	9.92		9.48				
5.00	10.64	11.03	11.06	10.53	10.97			
5.50	11.29	11.74	11.78	11.06				
6.00	11.97	12.41	12.50	11.63	12.09			
6.50	13.30	13.73		12.77				
7.00	15.87	16.32	16.68	14.95	15.48			
7.50	20.09	20.35	20.75	18.61	19.21	19.73		
8.00	17.26	15.09	13.81	18.21	16.47	15.31		
8.50	3.53	2.80	2.50	5.14	3.56	2.97		
9.00	1.92	1.90		1.99	1.90			
10.00	1.90	1.90	1.89	1.88				
12.00	1.86	1.86		1.85	1.85			

Figure S1. Distribution of interaction energy over a uniform random sample of angular space for analytical N₂-N₂ potentials¹⁻⁶ at R = 8 au.

Figure S2. Distribution of interaction energy over a uniform random sample of angular space for analytical N₂-N₂ potentials¹⁻⁶ at R = 8 au.

References

1. A. van der Avoird, P. E. S. Wormer and A. P. J. Jansen, J. Chem. Phys., 1986, 84, 1629.

2. D. Cappelletti, F. Vecchiocativi, F. Pirani, E. L. Heck and A. S. Dickinson, Mol. Phys., 1998, 93, 485.

3. V. Aquilanti, M. Bartolomei, D. Cappelletti, E. Carmona-Novillo and F. Pirani, J. Chem. Phys., 2002, 117, 615.

4. M. H. Karimi-Jafari, A. Maghari and S. Shahbazian, Chem. Phys., 2005, 314, 249.

5. L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti and F. Pirani, Chem. Phys. Lett., 2007, 445, 99.

6. D. Cappelletti, F. Pirani, B. Bussery-Honvault, L. Gomez and M. Bartolomei, Phys. Chem. Chem. Phys., 2008, 10, 4281.