SUPPORTING INFORMATION

Dual fluorescence in 9-amino-2,7,12,17-tetraphenylporphycene

Miquel Duran-Frigola, Roger Tejedor-Estrada, David Sánchez-García and Santi Nonell*

Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017, Barcelona, Spain.

Solvent effects

Several solvents with reported solvatochromic features¹ were chosen to assess the effects of polarity (π^*) and the ability to donate and accept hydrogen bonds (α and β , respectively). No significant absorption and emission shifts were observed, but both steady state fluorescence intensity and decay lifetimes turned out to be highly solvent dependent (Table S1).

Table S1 Steady state fluorescence intensities (F_1 and F_2 , $\lambda_{exc} = 647$ nm) and fluorescence lifetimes (τ_1 and τ_2 , $\lambda_{exc} = 596$ nm) measured in different solvents: toluene, tetrahydrofuran (THF), triethylamine (TEA), ethanol, dichloromethane (DCM), chloroform, ethyl acetate (AcOEt), and acetone. The F_1 and F_2 intensities were corrected for the sample absorbance and normalized relative to the largest F_1 intensity.

	F_1	F_2	τ_1 / ns	τ_2 / ns
Toluene	0.822	1.027	0.89	1.79
THF	0.230	0.633	0.43	1.14
TEA	0.382	0.152	0.58	1.24
Ethanol	0.304	0.577	0.50	1.08
DCM	0.790	0.770	0.71	1.44
Chloroform	1.000	0.906	0.80	1.53
AcOEt	0.309	0.702	0.51	1.48
Acetone	0.269	0.567	0.43	1.17

Table S2 shows the dependence of the normalized fluorescence intensity and the fluorescence lifetimes (τ_1 and τ_2) on the solvent parameters α , β and π^* . While the F₂ intensity does not significantly correlate with none of the linear combinations of these parameters, the intensity of F₁ shows a remarkable dependence on β and π^* . Similarly, τ_1 becomes faster when π^* and β are increased, but no significant correlation could be observed for the τ_2 values.

Table S2 Multiple regression of normalized intensities (F_1 and F_2) and fluorescence lifetimes (τ_1 and τ_2) depending on the α , β and π^* parameters of the solvent shown in Table 1. Data were fitted to the equation $Y = A\alpha + B\beta + P\pi^* + C$, where *Y* is either the steady state normalized intensity or the fluorescence lifetime in ns. *P*-value and R^2 are also shown.

	А	В	Р	С	<i>P</i> -value	\mathbf{R}^2
F ₁	0.343	-1.153	-0.765	1.309	< 0.001	0.988
F ₂	0.076	-0.555	0.345	0.672	0.168	0.683
τ_1 / ns	0.143	-0.645	-0.563	1.139	0.026	0.879
τ_2 / ns	-0.110	-0.772	-0.481	1.946	0.100	0.759

Computational calculations

Table S3 TD-DFT 6-31G(d) calculations for all possible tautomers of 9-ATPPo. *E* is the energy in eV and *f* is the oscillator strength of the corresponding transition from S_0 . The ground state energy of *trans*-1 has been used as reference.

Tautomer	State	E/eV	f	Main Configuration
	S ₀	0		
trans-1	S ₁	1.852	0.3088	68.85%(0-0), 10.39(1-1), 2.84%(1-0)
	S ₂	2.241	0.3313	65.84%(1-0), 19.64(0-1)
	S ₀	0.009		
trans-2	S ₁	1.982	0.4383	67.01%(0-0), 10.82%(1-1)
	S ₂	2.155	0.1714	71.13%(1-0), 19.15%(0-1)
	S ₀	0.074		
cis-A1	S ₁	2.084	0.3790	63.05%(0-0), 10.09%(1-1), 8.72%(1-0)
	S ₂	2.249	0.2517	63.72%(1-0), 16.05%(0-1), 5.92%(0-0)
	S ₀	0.097		
cis-A2	S ₁	1.931	0.2935	66.76%(0-0), 8,86%(1-1), 4.43%(1-0)
	S ₂	2.286	0.2861	63.65%(1-0), 20.33%(0-1), 3.08%(0-0)
	S ₀	1.340		
cis-B1	S ₁	3.221	0.3129	69.19%(0-0), 10.14%(1-1), 2.24%(2-0)
	S ₂	3.490	0.1368	66.26%(1-0), 13.64%(0-1), 6.39%(2-0)
	S ₀	1.236		
cis-B2	S ₁	3.104	0.2515	70.45%(0-0), 10.38%(1-1), 2.17%(2-0)
	S ₂	3.416	0.126	68.64%(1-0), 19.16%(0-1), 2.94%(3-0)
L	I	I		

Fig. S1 Orbital topologies of *trans-1* and *trans-2*.

References

 M. J. Kamlet, J.L.M. Abboud, M.H. Abraham and R.W. Taft, J. Org. Chem., 1983, 48, 2877–2887.