Supporting Information

Cationic Recognition by t-Butylcalix[4]arene-Functionalized Nanoprobes

Hong Yan ${ }^{\text {a }}$, Jin Luo ${ }^{\text {a }}$, Hong-Ming Xie ${ }^{\text {b }}$, Qiong Su ${ }^{\text {b }}$, De-Xun Xie ${ }^{\text {b }}$, Jun Yin ${ }^{\text {a }}$, Bridgid N. Wanjala ${ }^{\text {a }}$, Han Diao, ${ }^{b}$ De-Lie An ${ }^{\text {b }}$, Chuan-Jian Zhong ${ }^{\text {a* }}$

a) Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, USA; b) College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China

* To whom correspondance should eb addressed: E-mail: cjzhong@binghamton.edu

0. Molecular structure of calixarene

(B)

Scheme S1. (A) The modes for inversion of the phenyl unit; (B) $C_{2 v}-C_{2 v}$ interconversion of tetra-alkoxycalix[4]arene in the cone conformer. (ref. Atsushi Ikeda, Seiji Shinkai. "Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding". Chem. Rev. 1997, 97, 1713-1734)

1. Details of the Ligand Synthesis

(1) Synthesis of the 9, 10. 1, 4-dibromobutane ($0.55 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was diseolved in acetone (20 mL), and the solution was heated in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(6.2 \mathrm{~g}, 45 \mathrm{mmol})$ at $50{ }^{\circ} \mathrm{C}$ for 30 min . Then, to the above suspension was added a solution of 4 -iodophenol $(1.0 \mathrm{~g}, 4.5 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ over a period of 4 h by a machine. The reaction mixture was cooled to room temperature and filtered. The filtrate was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; eluent, Hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1\right)$ to give 0.91 g of $9(57 \%)$ and 0.28 g of $\mathbf{1 0}(12.5 \%)$,
respectively. 9: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.48(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $3.95\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta: 27.73\left(\mathrm{CH}_{2}\right), 29.34\left(\mathrm{CH}_{2}\right), 33.36\left(\mathrm{CH}_{2}\right), 66.90\left(\mathrm{CH}_{2}\right), 82.72(\mathrm{C}), 116.82(\mathrm{CH}), 138.18(\mathrm{CH}), 158.68$ (C). 10: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 1.95\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.98\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 25.81\left(\mathrm{CH}_{2}\right), 67.44\left(\mathrm{CH}_{2}\right), 82.63(\mathrm{C} \equiv), 116.83\left(\mathrm{CH}_{2}\right), 138.17\left(\mathrm{CH}_{2}\right), 158.75(\mathrm{C})$.
(2) Synthesis of the 5. t-BCA $4(2.89 \mathrm{~g}, 4.45 \mathrm{mmol}), n-\mathrm{BuBr}(12 \mathrm{~mL}, 132 \mathrm{mmol})$ were diseolved in DMF (20 $\mathrm{mL})$, and the solution was heated in the presence of $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(4.2 \mathrm{~g}, 13.75 \mathrm{mmol})$ and $\mathrm{BaO}(3.95 \mathrm{~g}, 25.8$ $\mathrm{mmol})$ at $30^{\circ} \mathrm{C}$ for 3 h . After evaporation of the solvent the mixture was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2},(100 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 25 \mathrm{~mL})$ and brine $(2 \times 25 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; eluent, $\left.\mathrm{Hexane} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1\right)$ to give 3.22 g of $5(89 \%)$ as a white solid. m.p. $136 \sim 138^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.82\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99(\mathrm{t}, J$ $\left.=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.83$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90(\mathrm{t}, J=8.4$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 5.67(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 6.51(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.04(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.06\left(\mathrm{CH}_{3}\right), 19.58\left(\mathrm{CH}_{3}\right), 31.04\left(\mathrm{CH}_{3}\right), 31.09\left(\mathrm{CH}_{2}\right), 31.27\left(\mathrm{CH}_{2}\right), 31.67$ $\left(\mathrm{CH}_{3}\right), 31.74\left(\mathrm{CH}_{3}\right), 32.40\left(\mathrm{CH}_{2}\right), 33.62(\mathrm{C}), 33.81(\mathrm{C}), 34.10(\mathrm{C}), 74.67\left(\mathrm{CH}_{2}\right), 76.00\left(\mathrm{CH}_{2}\right), 124.62(\mathrm{CH}), 124.70$ $(\mathrm{CH}), 124.94(\mathrm{CH}), 125.55(\mathrm{CH}), 129.36$ (C), 131.86 (C), 132.23 (C), 135.99 (C), 141.30 (C), 144.96 (C), 145.42 (C), 150.65 (C), 151.74 (C), 153.98 (C); APCI-MS $m / z: 1197.0\left(\mathrm{M}^{+}, 100\right)$.
(3) Synthesis of the 6. t-BCA $5(1.8 \mathrm{~g}, 2.35 \mathrm{mmol})$ was treated with oil-dispersed $\mathrm{NaH}(560 \mathrm{mg}, 23.2 \mathrm{mmol})$ in DMF (20 mL) for 1.5 hr at $50^{\circ} \mathrm{C}$, and then $9(1.0 \mathrm{~g}, 2.82 \mathrm{mmol})$ which was dissolved in DMF was added. The reaction mixture was refluxed for 20 h . Excess NaH was decomposed with methanol. The mixture was diluted with water $(200 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 25$ $\mathrm{mL})$ and brine $(2 \times 25 \mathrm{~mL})$, dried with MgSO_{4}, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; eluent, Hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1\right)$ to give 0.66 g of $6(88 \%)$ as a white solid. m.p. $106 \sim 108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.98\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.43\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.84(\mathrm{~m}, 6 \mathrm{H}$, CH_{2}), $3.94\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.00\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.40\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 6.69(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 14.20\left(\mathrm{CH}_{3}\right), 14.26\left(\mathrm{CH}_{3}\right), 19.35\left(\mathrm{CH}_{3}\right), 19.40\left(\mathrm{CH}_{3}\right), 25.99\left(\mathrm{CH}_{2}\right), 26.83\left(\mathrm{CH}_{2}\right), 31.07\left(\mathrm{CH}_{2}\right), 31.43$ $\left(\mathrm{CH}_{3}\right), 31.47\left(\mathrm{CH}_{3}\right), 32.38\left(\mathrm{CH}_{2}\right), 33.78(\mathrm{C}), 33.81(\mathrm{C}), 68.03\left(\mathrm{CH}_{2}\right), 74.70\left(\mathrm{CH}_{2}\right), 75.11\left(\mathrm{CH}_{2}\right), 75.15\left(\mathrm{CH}_{2}\right), 82.49$ (C), $116.84(\mathrm{CH}), 124.79(\mathrm{CH}), 124.89(\mathrm{CH}), 124.97(\mathrm{CH}), 133.58(\mathrm{C}), 133.73(\mathrm{C}), 133.92(\mathrm{C}), 138.15(\mathrm{CH})$, 144.18 (C), 144.38 (C), 153.61 (C), 153.75 (C), 158.95 (C).
(4) Synthesis of the 7. A suspension of t-BCA $4(0.4 \mathrm{~g}, 0.62 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.33 \mathrm{~g}, 2.39 \mathrm{mmol})$, and $9(0.53 \mathrm{~g}$, $1.49 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ was refluxed for 16 h . After evaporation of the solvent the mixture was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2},(100 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 25 \mathrm{~mL})$ and brine $(2 \times 25 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; eluent, Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1$) to give 0.57 g of $7(71 \%)$ as a white solid. m.p. $182 \sim 184^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$:
$0.99\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.01\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.27 (d, $\left.J=13.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 7.06$ (s, 4H, ArH), $7.49(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.69(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 25.97\left(\mathrm{CH}_{2}\right), 26.76\left(\mathrm{CH}_{2}\right), 31.01\left(\mathrm{CH}_{3}\right)$, $31.77\left(\mathrm{CH}_{3}\right), 33.80(\mathrm{C}), 33.94(\mathrm{C}), 67.61\left(\mathrm{CH}_{2}\right), 75.82\left(\mathrm{CH}_{2}\right), 82.60(\mathrm{C}), 116.85(\mathrm{CH}), 125.09(\mathrm{CH}), 125.50(\mathrm{CH})$, 127.64 (C), 132.59 (C), 138.16 (CH), 141.48 (C), 146.89 (C), 149.74 (C), 150.66 (C), 158.80 (C); APCI-MS $m / z:$ $1197.0\left(\mathrm{M}^{+}, 100\right)$.
(5) Synthesis of the 8. t-BCA $4(320 \mathrm{mg}, 0.49 \mathrm{mmol})$ was treated with oil-dispersed $\mathrm{NaH}(95 \mathrm{mg}, 3.96 \mathrm{mmol})$ in DMF (20 mL) for 0.5 hr at r.t., and then $9(1.04 \mathrm{~g}, 2.94 \mathrm{mmol})$ which was dissolved in DMF was added. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 20 h . Excess NaH was decomposed with methanol. The mixture was diluted with water $(200 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}(2$ $\times 25 \mathrm{~mL}$) and brine ($2 \times 25 \mathrm{~mL}$), dried with MgSO_{4}, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; eluent, $\left.\mathrm{Hexane} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1\right)$ to give 0.73 g of $\mathbf{8}(85 \%)$ as a white solid. m.p. $192 \sim 195{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.08\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.14\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.14(\mathrm{~d}, J$ $\left.=12.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.86\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.93\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}_{2} \mathrm{CH}_{2}\right), 4.38(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~s}, 8 \mathrm{H}, \mathrm{ArH}), 7.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 26.06\left(\mathrm{CH}_{2}\right), 26.96\left(\mathrm{CH}_{2}\right), 31.09(\mathrm{C}), 31.43\left(\mathrm{CH}_{3}\right), 33.82\left(\mathrm{CH}_{2}\right), 67.86\left(\mathrm{CH}_{2}\right), 74.80\left(\mathrm{CH}_{2}\right), 82.68(\mathrm{C})$, 116.69 (CH), $125.01(\mathrm{CH}), 133.63$ (C), $138.21(\mathrm{CH}), 144.56$ (C), 153.35 (C), 158.72 (C); APCI-MS $m / z: 1745.7$ ($\mathrm{M}^{+}, 100$).
(6) Synthesis of the 1. A 100 mL two-necked flask was charged with 6 ($663 \mathrm{mg}, 0.61 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(85$ $\mathrm{mg}, 0.12 \mathrm{mmol}$), CuI ($23 \mathrm{mg}, 0.12 \mathrm{mmol}$), diisopropylamine (5 mL), and toluene (20 mL) under nitrogen. Then, to the above suspension was added a solution of $\mathbf{1 1}(127 \mathrm{mg}, 0.85 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ over a period of 10 h at $65^{\circ} \mathrm{C}$ by a machine. The reaction mixture was cooled to room temperature and filtered. The filtrate was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The extract was then washed with brine, dried over MgSO_{4}, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2} ;\right.$ eluent, Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1$) to give 224 mg of $\mathbf{1}(33 \%)$ as a yellow solid. m.p. $108 \sim 110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 0.97\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.98\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.20(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.85\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.96\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $4.41\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 6.76(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 6.81(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.18\left(\mathrm{CH}_{3}\right), 14.23\left(\mathrm{CH}_{3}\right), 15.48\left(\mathrm{SCH}_{3}\right), 19.38\left(\mathrm{CH}_{2}\right), 19.42\left(\mathrm{CH}_{2}\right), 26.08\left(\mathrm{CH}_{2}\right), 26.88\left(\mathrm{CH}_{2}\right)$, $31.07\left(\mathrm{CH}_{2}\right), 31.11\left(\mathrm{CH}_{2}\right), 31.44\left(\mathrm{CH}_{3}\right), 31.48\left(\mathrm{CH}_{3}\right), 32.41\left(\mathrm{CH}_{2}\right), 33.78(\mathrm{C}), 33.82(\mathrm{C}), 68.02\left(\mathrm{CH}_{2}\right), 74.72\left(\mathrm{CH}_{2}\right)$, $75.10\left(\mathrm{CH}_{2}\right), 75.15\left(\mathrm{CH}_{2}\right), 87.78(\mathrm{C} \equiv), 89.56(\mathrm{C} \equiv), 114.49(\mathrm{CH}), 115.25(\mathrm{C}), 120.03(\mathrm{C}), 124.82(\mathrm{CH}), 124.91(\mathrm{CH})$, $124.99(\mathrm{CH}), 125.98(\mathrm{CH}), 131.71(\mathrm{CH}), 132.97(\mathrm{CH}), 133.59(\mathrm{C}), 133.73(\mathrm{C}), 133.93(\mathrm{C}), 133.96(\mathrm{C}), 138.76(\mathrm{C})$, 144.18 (CH), 144.21 (C), 144.39 (C), 153.62 (C), 153.79 (C), 159.15 (C); APCI-MS $m / z: 1128.5$ (${ }^{+}+\mathrm{H}_{2} \mathrm{O}, 100$); IR (KBr) v: 3054, 2987, 2930, 2306 (C三C), 1635, 1422, 1265, 896, 744, $705 \mathrm{~cm}^{-1}$.
(7) Synthesis of the 2. A 100 mL two-necked flask was charged with $7(255 \mathrm{mg}, 0.19 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(50$ $\mathrm{mg}, 0.07 \mathrm{mmol})$, $\mathrm{CuI}(8 \mathrm{mg}, 0.04 \mathrm{mmol})$, diisopropylamine (5 mL), and toluene (20 mL) under nitrogen. Then, to
the above suspension was added a solution of $\mathbf{1 1}(126 \mathrm{mg}, 0.85 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ over a period of 10 h at $65^{\circ} \mathrm{C}$ by a machine. The reaction mixture was cooled to room temperature and filtered. The filtrate was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The extract was then washed with brine, dried over MgSO_{4}, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; eluent, Hexane/EtOH, 3: 1) to give 200 mg of $2(77 \%)$ as a yellow solid. m.p. $244 \sim 245{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.99\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.33\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right)$, 4.05 ($\mathrm{s}, 8 \mathrm{H}, \mathrm{CH}_{2}$), $4.29\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.83$ (s, 4H, ArH), 7.06 (s , $4 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~s}, 2 \mathrm{H}$, $-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 15.40\left(\mathrm{SCH}_{3}\right), 26.14\left(\mathrm{CH}_{2}\right), 26.83\left(\mathrm{CH}_{2}\right), 31.03\left(\mathrm{CH}_{3}\right), 31.69\left(\mathrm{CH}_{2}\right), 31.78$ $\left(\mathrm{CH}_{3}\right), 33.81(\mathrm{C}), 33.95(\mathrm{C}), 67.62\left(\mathrm{CH}_{2}\right), 75.93\left(\mathrm{CH}_{2}\right), 87.79(\mathrm{C} \equiv), 89.57(\mathrm{C} \equiv), 114.50(\mathrm{CH}), 115.24(\mathrm{C}), 119(\mathrm{C})$, $125.09(\mathrm{CH}), 125.51(\mathrm{CH}), 125.85(\mathrm{CH}), 127.69(\mathrm{C}), 131.73(\mathrm{CH}), 132.62(\mathrm{C}), 133.02(\mathrm{CH}), 138.66(\mathrm{C}), 141.46$ (C); APCI-MS $m / z: 1237.2\left(\mathrm{M}^{+}, 100\right)$; IR (KBr) $v: 3054,2987,2306(\mathrm{C} \equiv \mathrm{C}), 1624,1422,1265,1121,896,742,705$ cm^{-1}.
(8) Synthesis of the 3. A 100 mL two-necked flask was charged with $8(727 \mathrm{mg}, 0.42 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(65$ $\mathrm{mg}, 0.09 \mathrm{mmol})$, $\mathrm{CuI}(18 \mathrm{mg}, 0.09 \mathrm{mmol})$, diisopropylamine (5 mL), and toluene (20 mL) under nitrogen. Then, to the above suspension was added a solution of $\mathbf{1 1}(377 \mathrm{mg}, 2.54 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ over a period of 10 h at $65^{\circ} \mathrm{C}$ by a machine. The reaction mixture was cooled to room temperature and filtered. The filtrate was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The extract was then washed with brine, dried over MgSO_{4}, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; eluent, Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1$) to give 213 mg of $\mathbf{3}(28 \%)$ as a yellow solid. m.p. $268-270{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 1.09\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.16(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.94\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 4.42\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 6.75(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~s}, 8 \mathrm{H}$, ArH), 7.11 (d, $J=8.8 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArH}$), $7.36(\mathrm{dd}, J=1.6 \mathrm{~Hz} \& 8.8 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $15.38\left(\mathrm{SCH}_{3}\right), 26.23\left(\mathrm{CH}_{2}\right), 27.06\left(\mathrm{CH}_{2}\right), 31.18\left(\mathrm{CH}_{2}\right), 31.46\left(\mathrm{CH}_{3}\right), 33.85(\mathrm{C}), 67.90\left(\mathrm{CH}_{2}\right), 74.94\left(\mathrm{CH}_{2}\right), 87.92$ (C \equiv), $89.53(\mathrm{C} \equiv), 114.42(\mathrm{CH}), 125.05(\mathrm{CH}), 125.86(\mathrm{CH}), 131.78(\mathrm{CH}), 132.21(\mathrm{C}), 133.09(\mathrm{CH}), 133.69(\mathrm{C})$, 138.69 (C), 144.57 (C), 153.48 (C), 158.95 (C); IR (KBr) v: 3054, 2987, 2540, 2342 ($\mathrm{C}=\mathrm{C}$), 1593, 1421, 1265, 1121, $895,738,705 \mathrm{~cm}^{-1}$.

2. Additional Optical and Spectroscopic Data

Figure S1. Photos showing the color changes for the methylthio- t-BCAmolecules capped gold nanoparticles in response to the addition of different ions $\left(\mathrm{M}^{(n+)} \mathrm{Cl}^{-}{ }_{\mathrm{n}}\right)$. (A) $\mathrm{Au} @ 1$; (B) $\mathrm{Au@2;} \mathrm{(C)} \mathrm{Au@3}$.

Figure S2. UV-visible spectra obtained from solutions of different methylthio-t-butylcalix[4]arenes capped gold nanoparticles in response to $\mathrm{Cu}^{2+}(1.5 \mathrm{mM})$. (THF+Cu ${ }^{2+}$ (red); Au@ $1+\mathrm{Cu}^{2+}$ (black); Au@ $2+\mathrm{Cu}^{2+}$ (green); Au@3+Cu ${ }^{2+}$ (blue). The insert shows the magnified view of SP band of a pure THF solvent upon addition of Cu^{2+}. This is a control experiment showing pure THF solvent upon addition of Cu^{2+} where a weak peak at 850 nm , corresponding to the absorption band of Cu^{2+}.

(A)

(B)

Figure S3. (A) UV-Visible spectra obtained from solutions of $\mathrm{Au} @ 1(1.75 \mu \mathrm{M})$ responding to $\mathrm{Na}^{+}\left(\left[\mathrm{Na}{ }^{2+}\right] /[\mathrm{Au} @ 1]>1.3 \times 10^{5}\right.$, only the first (red) and the last (blue) spectra were shown); (B) UV-Visible spectra obtained from solutions of Au@1 (1.75 $\mu \mathrm{M}$, red) responding to $\mathrm{Cu}^{2+}\left(\left[\mathrm{Cu}^{2+}\right] /[\mathrm{Au} @ 1]=17\right.$, blue $)$, and then responding to $\mathrm{Na}^{+}\left(\left[\mathrm{Na}^{+}\right] /[\mathrm{Au} @ 1]>1.3 \times 10^{5}\right.$, black $)$.

Figure S4. (A) UV-Visible spectra obtained from solutions of $\mathrm{Au} @ 1(0.4 \mu \mathrm{M})$ responding to various concentration of $\mathrm{Cs}^{+}((\mathrm{a})$ $\left[\mathrm{Cs}^{+}\right] /[\mathrm{Au} @ 1]=3750$; (b) $\left[\mathrm{Cs}^{+}\right] /[\mathrm{Au} @ 1]=1875$; (c) $\left[\mathrm{Cs}^{+}\right] /[\mathrm{Au} @ 1]=188$; (d) $\left[\mathrm{Cs}^{+}\right] /[\mathrm{Au} @ 1]=19, V_{\text {THF }}: V_{\mathrm{H} 2 \mathrm{O}}=67: 1$). The reactions were followed for 1 hour (only the $\mathrm{Au} @ 1$ (red line) spectrum was shown). (B) Kinetics for the absorbance at 650 nm for $\mathbf{b}-\left(\bullet, k=2.53 \times 10^{-1} \mathrm{~s}^{-1}\right), \mathbf{c}-\left(\bullet, k=5.3 \times 10^{-2} \mathrm{~s}^{-1}\right)$ and $\mathbf{d}-\left(\bullet, k=4.0 \times 10^{-2} \mathrm{~s}^{-1}\right)$ assemblies (lines: $1^{\text {st }}$ order kinetic fits). Based on the band characteristics and the kinetics of the spectral evolution of the red-shift SP band (e.g., @ 650 nm) (Figure 6 B), apparent rate constants were derived from fitting the time dependence of the absorbance with an exponential growth $\left(k, 1^{\text {stt }}-\right.$ order). Under different concentration of [Cs^{+}], the resulting rate constants displayed an order of $\mathbf{b}\left(2.53 \times 10^{-1} \mathrm{~s}^{-1}\right)>\mathbf{c}\left(5.3 \times 10^{-2}\right.$ $\left.\mathrm{s}^{-1}\right)>\mathbf{d}\left(4.0 \times 10^{-2} \mathrm{~s}^{-1}\right)$. a was quickly precipitated.

