Electronic Supplementary information

Proton Coupled Electron Transfer of Ubiquinone Q₂ Incorporated in Self-Assembled Monolayer

Celia Lemmer,^a Marcel Bouvet^a and Rita Meunier-Prest *^a

Determination of the pK_{ai} values using the Hammett correlation.

For the right part of the nine-member square scheme, the different pK_{ai} collected in the literature are summarized in Table 1. We decided to correlate all these data using the Hammett sigma plots.¹ Indeed, the Hammett equation was successfully applied to quinones,²⁻³ and the change in the pK_{ai} values can be described by a Hammett-type approach analog to the changes of the redox potential.⁴

The slope of the staight line expresses the sensitivity of the protonation reaction to substituent effect. The Hammett substitution constant, σ , reflects the influence of the substituent on the pK_{ai} value. When the quinone is substituted by more than one group, the substituent constant is the sum of the individual substituent constant $\Sigma\sigma_i$.²⁻³

It was demonstrated that the best correlations were obtained using the σ_{para} constants in benzene derivatives.^{2, 4-5} Moreover, in the case of the halogeno substituents, the σ_{meta} constants were used instead of the σ_{para} constants because they reflect more accurately the inductive effects of the halogeno group in the quinone system.⁵⁻⁶ In Table 1, $\Sigma\sigma_i$ corresponds to the sum of the σ_{para} constants except for the halogeno substituents for which we used σ_{meta} values.

The variations of pK_{a4} , pK_{a5} and pK_{a6} with $\Sigma\sigma_i$ are presented in Fig. 1. They show good correlations with regression coefficients from 0.914 to 0.96.

$\overline{2}$	$\Sigma \sigma_i$	pK_{a4}	pK_{a5}	pK_{a6}
$\circ = 1 4 = 0$				
$\underline{6 \ 5}$				
Substituents				
2,6-dichloro	0.74		7.3^{14}	10^{14}
2,5-dichloro	0.74		7.9^{15}	10^{15}
2-nitro	0.71		7.42^{16}	10.11^{16}
2-bromo	0.23		8.67^{16}	10.68^{16}
2-chloro	0.23		8.9^{15}	11^{15}
	0.23		8.81 ¹⁶	10.78^{16}
2-sulfonate	0.05		9.57 ¹⁵	11.9^{15}
None	0	4.1^{7}	9.85^{14}	11.4^{14}
	0	4^{8}	9.9 ¹⁷	11.9^{17}
2-tert-butyl	-0.10	4.3 ⁹		
2-methyl	-0.17	4.45^{10}	10.1^{14}	11.6^{14}
2,3-dimethyl	-0.34	4.65^{10}	10.43 ¹⁵	12.6^{15}
2,5-dimethyl	-0.34	4.611-12	10.38^{15}	12.5^{15}
2,6-dimethyl	-0.34	4.75^{10}	10.35^{15}	12.4^{15}
, <u>,</u>	-0.34		10.2^{18}	12.8^{18}
2,3-dimethyl-5-nonaprenyl	-0.50	4.7^{13}	10.8^{19}	
(plastoquinone)				
2,3,5-trimethyl	-0.51	4.95^{10}	10.8^{15}	12.9^{15}
tetramethyl (duroquinone)	-0.68	5.111-12	11.3 ¹⁴	12.7^{14}

Table1: Acidity constants of substituted 1,4-benzoquinones

Fig. 1: Hammett correlations: plots of pK_{a4} (dark circle), pK_{a5} (dark triangle) and pK_{a6} (dark square) with $\Sigma\sigma_i$ for the different substituted 1,4benzoquinones of Table 1. Values of pK_{a4} (open circle), pK_{a5} (open triangle) and pK_{a6} (open square) for the different UQ_n collected in Table 2 ($\Sigma\sigma_i$ = -0.43).

Using these correlations it is now possible to estimate the pK_{ai} values of UQ_2 and more generally UQ_n . Prince demonstrated that the σ_{para} value for the prenyl substituent is -0.16.² No significant difference was observed between polyprenyl chains when 1<n<10.² Concerning the methoxy group, it was established that a single methoxy group has a σ_{para} value of -0.27 but when two methoxy groups are adjacent like in UQ_n , the apparent σ_{para} value is only -0.10 for both.^{2, 5} This is attributed to the steric inhibition of resonance when the two methoxy groups are adjacent.^{2, 20} Rubinson²¹ proposes a more geometric picture of the correlations and comes to the same conclusion if the methoxy group blocked the normal preferred path. The $\Sigma\sigma_i$ value for UQ_n is thus $\Sigma\sigma_i=\sigma_{prenyl}+\sigma_2$ adjacent $OMe + \sigma_{Me}=-0.16-0.10-0.17=-0.43$. By reporting this value into the graph of Fig. 1, we obtained $pK_{a4}=4.79\pm0.09$, $pK_{a5}=10.51\pm0.16$ and $pK_{a6}=12.46\pm0.13$.

Let us compare these values to data collected in the literature. They are indicated in Table 2 for different chain lengths $(UQ_n \text{ with } n=2, 6, 9, 10)$ and reported on the graph of Fig. 1.

Table2: Acidity constants of coenzymes UQn

The pK_{a4} value obtained by pulse radiolysis¹³ for UQ₁₀ is in good agreement with the Hammett treatment.

Only one pK_{a6} value was determined.¹⁶ It is quite high compared to those deduced from the Hammett correlation (Fig.1) may be due to the fact that UQ_{10} is adsorbed flat on the mercury electrode, therefore the environment is completely different and may induce a higher pK_{a6} value.

Concerning pK_{a5} , the literature results were essentially obtained for UQ_{10} . There is a great discrepancy between the values from 9.94^{23} to $12.5.^{22}$ Ksenzhek et Al.²³ studied three coenzymes, UQ_6 , UQ_9 and UQ_{10} , by thin layer voltammetry on carbon electrode. In the entire pH range, the variation of E°' with pH is equal to - 60 mV / pH unit. The authors supposed that in basic medium (pH > 10.1) the oxidized form exists as an anion due to an OH⁻ conjugated with one of the oxygen atoms. Therefore pK_{a5} must have nearly the same value to explain the slope of -60 mV / pH unit. The other literature result concerns UQ_{10} incorporated in supported phospholipid layers.²² The authors recorded the voltammograms at different pH and at a scan rate of 0.1 Vs⁻¹. They reported the variations of the anodic (E_{pa}) and cathodic (E_{pc}) peak potentials with pH at this scan rate. Both varied linearly with pH. The slopes are respectivelly -60 mV and -60 mV for pH < 9, -120 mV and 0

for 9 < pH < 12.5 and -60 mV and 0 for pH>12.5. We wanted to compare these results with ours. We plotted the graph E_{pa} and E_{pc} in function of pH at 0.1 Vs⁻¹ (Fig. 2). We obtained exactly the same variations and the same slopes. The change in slopes were observed for pH=8.8, i.e. approximatly the same as those obtained for UQ₁₀.²² It should be noted that working at only one scan rate gives a partial view of the electrochemical behavior of the system. Indeed, the existence of a nine member square scheme implies that the cathodic and anodic peak potentials vary diversely with scan rate. Moreover, the reaction kinetics depending on pH, it is not possible to have access to the exact value of E° . The only way to obtain E° is to extrapolate its value by superimposing the theoretical curve²⁴ with the variations of E_{pa} and E_{pc} with log v as presented in Fig. 4 of the article. Therefore, until now the literature results on UQ_n present a great deal of incertainly that can explain the discrepancy between the values collected in Table 2.

Fig. 2: pH dependence of E°', cathodic (open triangle) and anodic peak potentials(open circle) at a scan rate of 0.1 V s⁻¹.

References

- 1. L. P. Hammett, J. Am. Chem. Soc., 1937, 59, 96-103.
- 2. R. C. Prince, P. L. Dutton and J. M. Bruce, *Febs Lett.*, 1983, 160, 273-276.
- 3. P. Zuman, Substituent Effects in Organic Polarography, Plenum, New York, 1967.
- R. J. Driebergen, E. E. Moret, L. H. M. Janssen, J. S. Blauw, J. J. M. Holthuis, S. J. P. Kelder, W. Verboom, D. N. Reinhoudt and W. E. Vanderlinden, *Anal. Chim. Acta*, 1992, 257, 257-273.
- 5. J. E. Heffner, C. T. Wigal and O. A. Moe, *Electroanalysis*, 1997, 9, 629-632.
- 6. J. E. Heffner, J. C. Raber, O. A. Moe and C. T. Wigal, J. Chem. Ed., 1998, 75, 365-367.
- 7. R. L. Willson, Trans. Farad. Soc., 1971, 67, 3020-3029.
- 8. G. E. Adams and B. D. Michael, Trans. Farad. Soc., 1967, 63, 1171.
- 9. J. K. Dohrmann and B. Bergmann, J. Phys. Chem., 1995, 99, 1218-1227.
- 10. K. B. Patel and R. L. Willson, J. Chem. Soc.-Farad. Trans. I, 1973, 69, 814-825.
- 11. P. S. Rao and E. Hayon, J. Phys. Chem. , 1973, 77, 2274-2276.
- 12. R. L. Wilson, J. Chem. Soc. D-Chem. Comm., 1971, 1249.
- 13. A. J. Swallow, in *Physical chemistry of quinones*, ed. P. L. Trumpower, Academic Press, New York, 1982.
- 14. J. H. Baxendale and H. R. Hardy, Trans. Farad. Soc., 1953, 49, 1140-1144.
- 15. C. A. Bishop and L. K. J. Tong, J. Am. Chem. Soc., 1965, 87, 501-505.
- 16. G. J. Gordillo and D. J. Schiffrin, J. Chem. Soc.-Faraday T., 1994, 90, 1913-1922.
- 17. S. I. Bailey and I. M. Ritchie, *Electrochim. Acta*, 1985, **30**, 3-12.
- 18. S. Hay, K. Westerlund and C. Tommos, J. Phys. Chem. B, 2007, 111, 3488-3495.
- 19. P. R. Rich, Biochim. Biophys. Acta 1984, 768, 53-79.
- 20. J. R. Burie, C. Boullais, M. Nonella, C. Mioskowski, E. Nabedryk and J. Breton, J. Phys. Chem. B, 1997, 101, 6607-6617.
- 21. K. A. Rubinson, J. Phys. Chem., 1984, 88, 148-156.
- 22. D. Marchal, W. Boireau, J. M. Laval, J. Moiroux and C. Bourdillon, Biophys. J., 1997, 72, 2679-2687.
- 23. O. S. Ksenzhek, S. A. Petrova and M. V. Kolodyazhny, Bioelectroch. Bioener., 1982, 9, 167-174.
- 24. E. Laviron, J. Electroanal. Chem., 1979, 101, 19-28.