Five isomers of monomeric cytosine and their interconversions induced by tunable UV laser light.

Electronic Supplementary Information

Leszek Lapinski, Igor Reva, Maciej J. Nowak, Rui Fausto

Figure S1. Fragment of the infrared spectrum of cytosine monomers isolated in an Ar matrix: (b) recorded after deposition of the matrix;

- (d) recorded after irradiation of the matrix with UV ($\lambda = 300$ nm) monochromatic laser light;
- (c) subtraction result: spectrum **d** recorded after irradiation at 300 nm, minus spectrum **b** recorded after deposition of the matrix;
- (a) subtraction result: the spectrum recorded after irradiation with monochromatic NIR 7034 cm⁻¹ laser light, minus the spectrum recorded after irradiation with monochromatic NIR 7013 cm⁻¹ laser light; The spectrum presented in trace a was obtained in a separate experiment. [Lapinski, L.; Nowak, M. J.; Reva, I.; Rostkowska, H.; Fausto, R. *Phys. Chem. Chem. Phys.* 2010, *12*, 9615 9618.]

Figure S2. Fragment of the infrared spectrum of cytosine monomers isolated in an Ar matrix: **(b)** recorded after deposition of the matrix;

- (d) recorded after irradiation of the matrix with UV ($\lambda = 300$ nm) monochromatic laser light;
- (c) subtraction result: spectrum **d** recorded after irradiation at 300 nm, minus spectrum **b** recorded after deposition of the matrix;
- (a) subtraction result: the spectrum recorded after irradiation with monochromatic NIR 7034 cm⁻¹ laser light, minus the spectrum recorded after irradiation with monochromatic NIR 7013 cm⁻¹ laser light; The spectrum presented in trace a was obtained in a separate experiment. [Lapinski, L.; Nowak, M. J.; Reva, I.; Rostkowska, H.; Fausto, R. *Phys. Chem. Chem. Phys.* 2010, *12*, 9615 9618.]
- (e) theoretical spectra calculated at the DFT(B3LYP)/6-31++G(d,p) level for: (blue) **AH1** and (red) **AH2** forms of cytosine. Theoretical wavenumbers were scaled by 0.978.

Figure S3. Spectral indications of the oxo-hydroxy phototautomeric reaction converting the **AO** tautomer into **AH1** and **AH2** forms. Fragments of the infrared spectrum of cytosine monomers isolated in an Ar matrix: (black) recorded after deposition of the matrix; (red) recorded after irradiation of the matrix with UV ($\lambda = 300$ nm) monochromatic laser light. The bands marked as **AH1** and **AH2** were attributed to these forms on the basis of their behavior upon NIR irradiations at 7034 cm⁻¹ and at 7013 cm⁻¹ (see Ref [Lapinski, L.; Nowak, M. J.; Reva, I.; Rostkowska, H.; Fausto, R. *Phys. Chem. Chem. Phys.* **2010**, *12*, 9615 - 9618.] and Figures S1, S2 in the **ESI** of the current paper).

Figure S4 (part 1).

Figure S4 (part 2).

Figure S4 (part 3).

Infrared spectrum of cytosine monomers isolated in an Ar matrix: (a) recorded after deposition of the matrix; (b) recorded after irradiation of the matrix with UV ($\lambda = 300$ nm) monochromatic laser light; The bands were attributed to the particular **AH1**, **AH2**, **AO**, **IO1** or **IO2** forms on the basis of their intensity changes occurring upon UV and NIR irradiations (see detailed description in the text).

Figure S5. IR bands in the spectrum of **IO2** form increasing upon **IO1** \rightarrow **IO2** conversion induced by UV ($\lambda = 300$ nm) monochromatic laser light. Fragments of the infrared spectrum of cytosine monomers isolated in an Ar matrix: (black) recorded after deposition of the matrix; (red) recorded after irradiation of the matrix with UV ($\lambda = 300$ nm) monochromatic laser light.

Table S1

IR bands observed in the spectrum of cytosine isolated in an Ar matrix and their assignment to **AH1**, **AH2**, **AO**, **IO1** or **IO2** forms of the compound.

wavenumber	integrated	assignment to the
	arbitrary	
cm ⁻¹	units	
3600.6	0.110	AH2
3590.3	0.266	AH1
3565.1	0.160	AH1, AO
3562.7	0.180	AH2, AO
3497.2	0.037	IO1, IO2
3470.8	0.140	AO
3463.8	0.009	AO
3450.8	0.009	
3444.8	0.315	AHI, AH2
3440.3	0.180	AO
1782.6	0.023	AO
1756.8	0.020	IO1
1752.3	0.057	IO1
1749.2	0.030	IO2
1746.9	0.105	IO1
1733.8		
1731.8	0.114	AO
1729.6		
1719.7	0.740	10
1717.1	0.749	AU
1680.2	0,008	IO2
1674.4	0.041	IO2
1671.2	0.071	IO1
1665.7	0.100	AO
1655.7	0.345	AO
1648.1	0.055	AO
1623.3	0.943	AH1
1620.0	0.687	AH2
1607.7	0.035	
1601.0	0.056	AH2
1598.7	0.144	AO, AH2
1595.0	0.214	AO
1591.0	0.140	лн1
1589.2	0.140	AIII
1574.3	0.066	AH2
1569.2	0.138	AH1
1561.1	0.139	AH1
1553.8	0.012	AH1
1550.8	0.049	10
1546.5	0.048	AU
1538.4	0.126	AO
1519.7	0.020	AO
1495.8	0.050	AH1
1491.7	0.050	AH2
1474.5	0.135	AO
1472.6	0.024	I01

1462.5	0.004	IO2
1439.6	0.602	A TT1
1437.2	0.002	AHI
1428.0	0.400	A 112
1425.5	0.400	AHZ
1422.2	0.072	AO
1416.9	0.019	AH2, IO2
1382.7	0.036	AH2
1381.0	0.010	IO1
1378.7	0.100	AH2
1374.0	0.044	AH1
1338.0	0.012	AH2
1337.0	0.055	AO
1332.0	0.095	AH1
1319.6	0.156	AH1
1302.8	0.025	AH1
1275.3	0.003	IO2
1259.8	0.005	AH2
1256.7	0.054	AH1
1250.8	0.013	AH1
1243.7	0.033	AO
1223.6	0.082	AH2
1210.5	0.048	AH1
1195.2	0.210	AH2, AO
1191.4	0.015	IO1
1184.8	0.005	IO2
1124.2	0.050	IO1
1110.2	0.038	AH1
1107.3	0.030	AH2
1090.1	0.049	AO
1083.5	0.069	AH1
1082.1	0.051	AH2
1076.9	0.013	AH1
1053.3	0.001	IO2
981.0	0.025	AH1
954.9	0.010	AH1
817.6	0.026	<u>101, AH1, AH2</u>
807.3	0.080	AH1
805.9	0.069	AH2
/82.1	0.026	AH2
/80.6	0.072	<u>AO, 102</u>
/6/.6	0.005	
/50.8	0.004	102
746.9	0.014	
743.4	0.0103	AO
716.0	0.003	AU
/10.8	0.038	
/10.0	0.009	
/08.8	0.008	
636.6	0.001	104 IO1
0.000	0.0.51	11/1

633.9	0.016	AH1
622.8	0.014	AO
617.9	0.006	AH2
614.5	0.070	AO
601.3	0.010	AH2
595.6	0.005	AH1
584.2	0.001	IO2
578.8	0.050	40
575.5	0.039	AO
568.5	0.038	AO
558.6	0.017	AH1
554.9	0.009	AH2

537.2	0.022	AO
529.2	0.017	AO, AH1
527.0	0.292	AH1
523.3		
520.3		
517.6	0.157	AH2
508.4	0.127	AH2
506.6		
499.0	0.088	AH2
444.6	0.013	AH1
442.5	0.012	AH2

The wavenumber of the strongest component of multiplet band is underline.