Supplementary Information

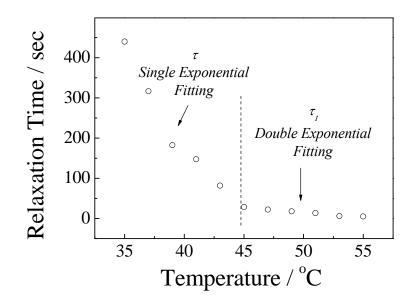
Kinetics of Thermo-Induced Micelle-to-Vesicle Transitions in Catanionic

Surfactant System Investigated by Stopped-Flow Temperature Jump

Jingyan Zhang^{$\dagger, \ddagger}$ and Shiyong Liu^{*, \ddagger}</sup>

School of Materials and Chemical Engineering, Anhui Key Laboratory of Advanced Building Materials, Anhui University of Architecture, Hefei, Anhui 230022, China; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China

[†] Anhui University of Architecture


[‡]University of Science and Technology of China

* To whom correspondence should be addressed. E-mail: sliu@ustc.edu.cn

Table S1. Summary of the Data Calculated from Single- and Double-Exponential
Fitting to the Kinetic Traces Shown in Figure 8.

Single-Exponential	/	С	/	/	τ / s	χ^2
Fitting	/	1	/	/	136	17.6
Double-Exponential	c_1	c_2	τ_1 / s	τ_2/s	$\tau_{\rm f}/~{ m s}$	χ^2
Fitting	0.42	0.58	5.2	188	73	0.61

 τ_i : characteristic relaxation time. c_i : amplitudes associated with τ_i . The accuracy of the obtained τ_i and c_i values was within $\pm 5\%$.

Figure S1. Final temperature dependence of relaxation times τ and τ_1 obtained respectively from the single exponential fitting of stopped-flow dynamic traces shown in Figure 4a and double exponential fitting results of stopped-flow dynamic traces shown in Figure 6.