Revisiting isoreticular MOFs of alkaline earth metals: A comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba)

Li-Ming Yang*[†], Ponniah Vajeeston[‡], Ponniah Ravindran[‡], Helmer Fjellvåg[‡] and Mats

Tilset*[†]

[†]Center of Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, Box 1033 Blindern, N-0315, Oslo, Norway, [‡]Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Box 1033 Blindern, N-0315, Oslo, Norway

(E-mail of corresponding authors: <u>mats.tilset@kjemi.uio.no</u> and <u>l.m.yang@kjemi.uio.no</u>.; Fax: +47 22855441;)

Page2, Table S1. Optimized bond length (Å) and bond angles (°) for A-IRMOF-1 series

Page3, Fig. S1, The calculated partial density of states (PDOS) for Mg-IRMOF-1.

Page4, Fig. S2, The calculated partial density of states (PDOS) for Ca-IRMOF-1.

Page5, Fig. S3, The calculated partial density of states (PDOS) for Sr-IRMOF-1.

Page6, Fig. S4, The calculated partial density of states (PDOS) for Ba-IRMOF-1.

Page7, Fig. S5, Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Mg-IRMOF-1 in the (110) plane.

Page8, Fig. S6, Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Ca-IRMOF-1 in the (110) plane.

Page9, Fig. S7, Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Sr-IRMOF-1 in the (110) plane.

Page10, Fig. S8, Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Ba-IRMOF-1 in the (110) plane.

Page11, Fig. S9, Calculated Bader charges (BC), bond overlap populations (BOP) and

Mulliken effective charges (MEC) for the A-IRMOF-1 series (A = Be, Mg, Ca, Sr, Ba).

Page12, Fig. S10, The calculated optical properties for Mg-IRMOF-1.

Page13, Fig. S11, The calculated band structure for Mg-IRMOF-1.

Page14, Fig. S12, The calculated optical properties for Ca-IRMOF-1.

Page15, Fig. S13, The calculated band structure for Ca-IRMOF-1.

Page16, Fig. S14, The calculated optical properties for Sr-IRMOF-1.

Page17, Fig. S15, The calculated band structure for Sr-IRMOF-1.

Page18, Fig. S16, The calculated optical properties for Ba-IRMOF-1.

Page19, Fig. S17, The calculated band structure for Ba-IRMOF-1.

А	C1-C2 (Å)	C2-C3 (Å)	C3-C3 (Å)	C1-O2 (Å)	A-O1 (Å)	A-O2 (Å)	O2-A-O2 (°)
Be	<i>1.490</i> , 1.491 <1.468>	<i>1.404</i> , 1.404 <1.388>	<i>1.391</i> , 1.391 <1.377>	<i>1.274</i> , 1.274 <1.262>	1.717, 1.717	<i>1.634</i> , 1.635 <1.602>	<i>102.905</i> , 102.921 <102.812>
Mg	<i>1.496</i> , 1.496 <1.472>	<i>1.404</i> , 1.404 <1.388>	<i>1.391</i> , 1.391 <1.377>	<i>1.277</i> , 1.276 <1.265>	1.989, 1.989	<i>1.959</i> , 1.960 <1.903>	108.332, 108.339 <108.210>
Ca	1.499, 1.500 <1.476>	<i>1.404</i> , 1.403 <1.389>	<i>1.391</i> , 1.391 <1.377>	<i>1.277</i> , 1.277 <1.266>	2.270, 2.270	2.242, 2.242 <2.125>	<i>112.455</i> , 112.459 <111.751>
Sr	1.502, 1.502	1.403, 1.403	1.392, 1.392	1.276, 1.276	2.433, 2.434	2.406, 2.406	114.125, 114.125
Ba	1.504, 1.504	1.403, 1.403	1.392, 1.392	1.276, 1.276	2.607, 2.607	2.579, 2.580	115.537, 115.529

Table S1. Optimized bond length (Å) and bond angles (°) for A-IRMOF-1 (A = Be, Mg, Ca, Sr, or Ba) at their equilibrium volumes^a

^a The bond lengths and angles in italic and bold fonts are from Γ -point and 2×2×2 k-point calculations, respectively. Data in
shares> are from ref 9.

Figure S1. Calculated partial density of states (PDOS) for Mg-IRMOF-1 obtained from (a) Γ point (1×1×1) only k-mesh and (b) 3×3×3 k-mesh using the Monkhorst–Pack scheme.

Figure S2. Calculated partial density of states (PDOS) for Ca-IRMOF-1 obtained from (a) Γ point (1×1×1) only k-mesh and (b) 3×3×3 k-mesh using the Monkhorst-Pack scheme.

Figure S3. Calculated partial density of states (PDOS) for Sr-IRMOF-1 obtained from (a) Γ point (1×1×1) only k-mesh and (b) 3×3×3 k-mesh using the Monkhorst–Pack scheme.

5

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

Figure S4. Calculated partial density of states (PDOS) for Ba-IRMOF-1 obtained from (a) Γ point (1×1×1) only k-mesh and (b) 3×3×3 k-mesh using the Monkhorst-Pack scheme.

0.4

Figure S5. Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Mg-IRMOF-1 in the (110) plane.

7

Figure S6. Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Ca-IRMOF-1 in the (110) plane.

(a)

Figure S7. Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Sr-IRMOF-1 in the (110) plane.

9

(a)

(b)

Figure S8. Calculated charge density (a), charge transfer (b), and electron localization function, ELF (c) plots for Ba-IRMOF-1 in the (110) plane.

Figure S9. Calculated Bader charges (BC; black color in brackets), bond overlap populations (BOP; red color) and Mulliken effective charges (MEC; blue color in parentheses) for the *A*-IRMOF-1 series (A = Be, Mg, Ca, Sr, Ba).

Figure S10. Calculated optical properties for Mg-IRMOF-1: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, and (f) absorption $\alpha(\omega)$.

Figure S11. Band structure of Mg-IRMOF-1. The Fermi level is set to zero.

Figure S12. Calculated optical properties for Ca-IRMOF-1: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, and (f) absorption $\alpha(\omega)$.

Figure S13. Band structure of Ca-IRMOF-1. The Fermi level is set to zero.

Figure S14. Calculated optical properties for Sr-IRMOF-1: (a) dielectric function $\varepsilon(\omega)$, (b) reflectivity $R(\omega)$, (c) refractive index $\mathbf{n}(\omega)$; extinction coefficient $\mathbf{k}(\omega)$, (d) optical conductivity $\sigma(\omega)$, (e) energy loss function $L(\omega)$, and (f) absorption $\alpha(\omega)$.

Figure S15. Band structure of Sr-IRMOF-1. The Fermi level is set to zero.

Figure S16. The calculated optical spectra for Ba-IRMOF-1: (a) dielectric function $\varepsilon(\omega)$; (b) reflectivity $R(\omega)$; (c) refractive index $\mathbf{n}(\omega)$ and extinction coefficient $\mathbf{k}(\omega)$; (d) optical conductivity $\sigma(\omega)$; (e) energy loss function $L(\omega)$; (f) absorption coefficient $\alpha(\omega)$ (cm⁻¹).

Figure S17. The calculated electronic band structure of Ba-IRMOF-1. The Fermi level is set to zero and placed in the valence band maximum.