Supplementary Information For

Large-scale screening of metal hydrides for hydrogen storage from firstprinciples calculations based on equilibrium reaction thermodynamics

Ki Chul Kim¹, Anant D. Kulkarni², J. Karl Johnson², and David S. Sholl^{1*}

¹School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA, 30332-0100, USA

²Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

DFT optimization of crystal structures

We updated our original database by including 147 new crystal compounds whose structures are currently available. The compounds are listed in Table S1 and the detailed structural information is shown in Table S2.

One-element compounds					
Al	В	С	Ca	K	
Li	Mg	Na	Sc	Si	
Ti	V				
		Two-element c	ompounds		
AlB ₂	AlB ₁₂	Al_4C_3	Al ₂ Ca	Al ₄ Ca	
AlH ₃	AlLi	Al ₂ Li ₃	Al ₃ Li	Al ₄ Li ₉	
Al ₁₂ Mg ₁₇	$Al_{14}Mg_{13}$	Al ₃₀ Mg ₂₃	AlN	AlSc	
AlSc ₂	Al ₂ Sc	Al ₃ Sc	AlTi	AlTi ₃	
Al ₂ Ti	Al ₃ Ti	AlV	AlV ₃	Al ₃ V	
Al ₁₀ V	Al ₂₃ V ₄	$Al_{45}V_7$	B_4C	B ₁₃ C ₂	
B ₃ Ca ₄ LiN ₆	$(B_{10}H_{13})_2$	BN	$B_{13}N_2$	C ₂ Ca	
C_2N_2	C_3N_4	C_5N_4	$C_{12}N_{6}$	CaB ₄	
CaB ₆	CaH ₂	CaLi ₂	CaMg ₂	CaN ₆	
Ca ₂ N	Ca ₃ N ₂	$Ca_{11}N_8$	CaSi	CaSi ₂	
Ca ₂ Si	Ca ₅ Si ₃	KB ₆	KC ₈	K ₂ C ₂	
KH	KN ₃	K ₃ N	KSi	K ₄ Si ₄	
K ₈ Si ₄₆	LiB	Li ₅ B ₄	Li ₂ C ₂	LiH	

Table S1. List of 359 compounds included in our database.

^{*} Corresponding author. Email: david.sholl@chbe.gatech.edu

LiMg	LiN ₃	Li ₃ N	LiSi	Li ₂ Si			
Li ₇ Si ₂	Li ₁₂ Si ₇	Li ₁₃ Si ₄	Li ₁₅ Si ₄	MgB ₂			
MgB ₄	MgB ₇	MgC ₂	Mg ₂ C ₃	MgH ₂			
Mg ₃ N ₂	MgSc	Mg ₂ Si	Mg ₅ Si ₆	N ₄ Si ₃			
NaB ₁₅	Na ₃ B ₂₀	Na ₂ C ₂	NaH	NaN ₃			
Na ₃ N	NaSi	Na_4Si_4	Na ₈ Si ₄₆	ScB ₂			
ScB ₁₂	ScC	Sc ₂ C	Sc ₂ C ₃	Sc ₃ C ₄			
Sc ₄ C ₃	Sc ₁₅ C ₁₉	ScH ₂	ScN	ScSi			
ScSi ₂	Sc ₅ Si ₃	SiB ₃	SiB ₆	SiC			
SiH	TiB	TiB ₂	TiC	Ti ₂ C			
Ti ₈ C ₅	TiH	TiH ₂	TiN	Ti ₂ N			
TiSi	TiSi ₂	Ti ₅ Si ₃	Ti ₅ Si ₄	TiV			
VB	VB ₂	V_2B_3	V_3B_2	VC			
V ₂ C	V ₆ C ₅	V_8C_7	VH ₂	V ₂ H			
VN	V_2N	VSi ₂	V ₃ Si	V ₅ Si ₃			
V ₆ Si ₅							
	Three-element compounds						
Al(BH ₄) ₃	Al ₅ C ₃ N	$Al_6C_3N_2$	Al ₇ C ₃ N ₃	Al ₈ C ₃ N ₄			
Al ₂ Ca ₃ N ₄	Al ₂ CaSi ₂	Al ₂ Ca ₃ Si ₂	AlLi ₃ N ₂	AlLiSi			
Al ₃ Li ₈ Si ₅	$Al_3Li_{12}Si_4$	Al_2MgC_2	AlMg ₄ Si ₆	Al ₁₈ Mg ₃ Ti ₂			
AlSc ₂ Si ₂	BC_2N	$C_2H_4N_4$	$C_2H_{18}N_{18}$	$C_2N_2(NH)$			
CaAlH ₅	$Ca(AlH_4)_2$	Ca ₄ Al ₃ Mg	Ca ₃ AlN ₃	CaAlSi			
CaB ₂ C ₂	Ca(BH ₄) ₂	$CaB_{12}H_{12}$	Ca ₃ BN ₃	CaCN ₂			
CaC_4N_6	Ca ₂ HN	CaLiN	CaLiSi ₂	Ca ₂ LiSi ₃			
CaMg ₂ N ₂	CaMgSi	$Ca_4N_2(CN_2)$	$Ca_{11}N_6(CN_2)_2$	Ca ₂ N ₃ V			
Ca ₃ N ₃ V	CaSiN ₂	$Ca_2Si_5N_8$	$Ca_5(Si_2N_6)$	Ca ₄ TiN ₄			
H ₉ CN ₉	KAlH ₄	K ₃ AlH ₆	KBH_4	KB ₂₁ H ₁₈			
$K_2B_6H_6$	$K_2(B_{10}H_{10})$	$K_2B_{12}H_{12}$	KCN	KC ₂ N ₃			
KC ₄ N ₃	K ₂ CN ₂	$K_3C_6N_9$	K ₃ LiSi ₄	K7LiSi8			
KMgH ₃	K_2MgH_4	KNH_2	$(K(NH_2))(NH_3)_2$	KSiH ₃			
LiAlB ₁₄	LiAlH ₄	Li ₃ AlH ₆	LiBC	LiB ₁₃ C ₂			
$Li_2B_{12}C_2$	LiBH	Li(BH ₂)	LiBH ₄	$Li_2B_{12}H_{12}$			
Li ₃ (BH ₆)	Li ₃ BN ₂	$Li_2B_{12}Si_2$	LiCN	Li ₂ CN ₂			
LiMgH ₃	LiMgN	Li ₂ MgSi	$Li_{12}Mg_3Si_4$	LiNH ₂			
Li ₂ NH	Li ₄ NH	LiN ₃ Si ₂	Li ₅ N ₃ Si	Li ₇ N ₄ V			
LiNa ₂ N	LiNa ₅ N ₂	$Li_2Na_4N_2$	Li ₂ NaN	Li ₃ Na ₃ N ₂			
Li ₄ Na ₂ N ₂	Li ₅ NaN ₂	Li ₃ NaSi ₆	Li ₃ ScN ₂	MgAlH ₅			
$Mg(AlH_4)_2$	MgAlSi	$MgAl_2Si_2$	MgB_2C_2	$M\overline{gB_{12}C_2}$			

Mg ₂ B ₂₄ C	$Mg(BH_4)_2$	$MgB_{12}H_{12}$	MgB ₉ N	Mg ₃ BN ₃	
MgB ₁₂ Si ₂	MgC ₄ N ₆	Mg(NCN)	$Mg(NH_2)_2$	MgSiN ₂	
Mg ₇ TiH ₁₆	N ₂ BH ₇	$N_2B_{10}H_{18}$	$N_3B_3H_6$	$N_3B_3H_{12}$	
$N_4B_9H_{11}$	$N_4B_{10}H_8$	$N_4B_{10}H_{22}$	NH ₃ BH ₃	$(NH_4)_2B_{12}H_{12}$	
(NH ₂)CN	NH ₄ HCN ₂	N(SiH ₃) ₃	NaAlH ₄	Na ₃ AlH ₆	
Na ₅ Al ₃ H ₁₄	NaAlSi	NaAlSi ₄	NaBH ₄	$Na_2(B_{10}H_{10})$	
Na ₃ (BN ₂)	NaCN	NaC ₄ N ₃	Na ₂ CN ₂	Na ₃ C ₆ N ₉	
NaMgH ₃	NaN ₃ C ₂	NaNH ₂	ScAl ₃ C ₃	Sc ₂ AlC	
Sc ₃ AlC	ScB ₂ C	ScB_2C_2	Sc_2BC_2	$Sc_2V_3Si_4$	
SiCN	SiC ₂ N ₄	Si ₂ CN ₄	Ti ₂ AlC	Ti ₃ AlC	
Ti ₃ AlC ₂	Ti ₂ AlN	Ti ₃ AlN	Ti ₄ AlN ₃	Ti ₆ Si ₂ B	
Ti ₃ SiC ₂	$V_{12}Al_3C_8$	V ₅ SiB ₂			
		Four-element c	ompounds		
AlNC ₃ H ₁₀	BCH ₅ N ₂	$B_{10}C_{6}H_{30}N_{2} \\$	$B_{20}C_3H_{30}N_2$	BC_4KN_4	
CH ₃ NH ₂ BH ₃	Ca ₂ N ₂ BH	$Ca(NH_2BH_3)_2$	KAl(NH ₂) ₄	$K_5C_2HN_4$	
KCaN ₃ H ₆	K(HCN ₂)	K ₂ LiAlH ₆	KLi ₃ (NH ₂) ₄	KLi7N8H16	
$K_2Li(NH_2)_3$	$K_2Mg(NH_2)_4$	K ₂ NaAlH ₆	$K_2Na(NH_2)_3$	$K_3Si_6N_{11}H_6$	
LiAlMg ₁₀ H ₂₄	LiAl(NH ₂) ₄	Li(B(CN) ₄)	$Li_4BN_3H_{10}$	Li ₂ Ca(NH) ₂	
LiK(BH ₄) ₂	Li ₂ Mg(NH) ₂	Li(NH ₂ BH ₃)	$(Li(NH_3)_4)_2(B_6H_6)(NH_3)_2$	LiNa ₂ AlH ₆	
LiNa ₂ (NH ₂) ₃	Li ₃ Na(NH ₂) ₄	LiSc(BH ₄) ₄	$Mg(BH_4)_2(NH_3)_2$	$(NH_4)B(CN)_4$	
NaAl(NH ₂) ₄	NaB(CN) ₄	NaN ₂ CH	$Si_2C_7H_{18}N_2$	VC ₈ H ₂₄ N ₄	
Five-element compounds					
LiAlC ₄ H ₁₆ N ₄	$LiSi_3C_9H_{27}N_2$	$Si_2B_2C_{12}H_{37}N_5$			

Compound	Space	Space Structural parameters (Å, d	
Compound	group	Experimental	Calculated
A 1D	D4 2 2	<i>a</i> = 10.17	<i>a</i> = 11.41
AID ₁₂	P4 ₁ 2 ₁ 2	c = 14.28	<i>c</i> = 13.86
		<i>a</i> = 3.335	<i>a</i> = 3.349
Al_4C_3	R-3mH	<i>c</i> = 24.967	<i>c</i> = 25.109
		$\gamma = 120.0$	$\gamma = 120.0$
	I4/mmm	<i>a</i> = 4.354	<i>a</i> = 4.368
Al4Ca	14/1111111	<i>c</i> = 11.18	<i>c</i> = 11.19
Al ₁₄ Mg ₁₃	Im-3m	<i>a</i> = 10.44	<i>a</i> = 10.2
Al ₃₀ Mg ₂₃	R-3H	<i>a</i> = 12.825	<i>a</i> = 12.787
		<i>a</i> = 7.693	<i>a</i> = 7.681
$Al_{23}V_4$	P63/mmc	c = 17.04	<i>c</i> = 17.04
		$\gamma = 120$	$\gamma = 120$
		<i>a</i> = 25.604	<i>a</i> = 25.655
A1 X7	C^{2}/m	<i>b</i> = 7.621	b = 7.608
$A145 V_7$	C2/m	<i>c</i> = 11.081	<i>c</i> = 11.086
		$\beta = 128.92$	$\beta = 128.88$
		<i>a</i> = 5.60	<i>a</i> = 7.40
B_4C	R-3mH	<i>c</i> = 12.12	c = 8.77
		$\gamma = 120$	$\gamma = 120$
		<i>a</i> = 5.633	<i>a</i> = 5.656
$B_{13}C_2$	R-3mH	<i>c</i> = 12.164	<i>c</i> = 12.12
		$\gamma = 120$	$\gamma = 120$
		<i>a</i> = 10.66	<i>a</i> = 10.83
$(B_{10}H_{13})_2$	Pbca	<i>b</i> = 10.55	<i>b</i> = 10.69
		<i>c</i> = 14.56	<i>c</i> = 14.78
P. N.	D 2m	<i>a</i> = 5.45	<i>a</i> = 5.49
D _{131N₂}	K-3III	<i>c</i> = 12.26	<i>c</i> = 12.41
		<i>a</i> = 7.208	<i>a</i> = 7.170
C.C.	$C^{2/m}$	<i>b</i> = 3.828	<i>b</i> = 3.833
C ₂ Ca	C2/111	<i>c</i> = 7.368	<i>c</i> = 7.416
		$\beta = 107.193$	$\beta = 106.961$
		<i>a</i> = 6.31	<i>a</i> = 6.72
C_2N_2	Pcab	b = 7.08	<i>b</i> = 6.38
		<i>c</i> = 6.19	<i>c</i> = 6.06

Table S2. Comparison of the experimental and the DFT calculated structural parameters for the 147 compounds listed in Table 1, with all distances in Å and angles in degrees.

		<i>a</i> = 4.742	<i>a</i> = 4.766
C_3N_4	P-6m2	c = 6.720	c = 6.400
		$\gamma = 120$	$\gamma = 120$
		<i>a</i> = 9.062	<i>a</i> = 8.912
C_5N_4	R3cH	<i>c</i> = 11.625	<i>c</i> = 11.416
		$\gamma = 120$	$\gamma = 120$
C ₁₂ N ₆	Pa-3	<i>a</i> = 10.781	<i>a</i> = 10.746
CaP	D4/mhm	<i>a</i> = 7.10	<i>a</i> = 7.17
CaD ₄	P 4/1110111	<i>c</i> = 4.14	<i>c</i> = 4.1
		<i>a</i> = 7.69	<i>a</i> = 7.65
Ca ₂ Si	Pnma	<i>b</i> = 4.82	<i>b</i> = 4.83
		<i>c</i> = 9.05	<i>c</i> = 9.09
		<i>a</i> = 4.92	<i>a</i> = 4.97
KC ₈	Fddds	<i>b</i> = 8.51	<i>b</i> = 8.61
		<i>c</i> = 21.40	<i>c</i> = 21.37
KSi	P-43n	<i>a</i> = 12.62	<i>a</i> = 12.72
K ₈ Si ₄₆	Pm-3n	<i>a</i> = 10.30	<i>a</i> = 10.36
		<i>a</i> = 6.40	<i>a</i> = 6.225
LiB	PNMA	<i>b</i> = 3.00	<i>b</i> = 3.073
		<i>c</i> = 5.6	<i>c</i> = 5.589
LiMg	Im-3m	<i>a</i> = 3.484	<i>a</i> = 3.434
		<i>a</i> = 8.6	<i>a</i> = 8.54
Li ₁₂ Si ₇	Pnma	<i>b</i> = 19.755	<i>b</i> = 19.631
		<i>c</i> = 14.336	<i>c</i> = 14.32
		<i>a</i> = 7.99	<i>a</i> = 7.902
$Li_{13}Si_4$	Pbam	<i>b</i> = 15.21	<i>b</i> = 15.022
		<i>c</i> = 4.43	<i>c</i> = 4.432
Li ₁₅ Si ₄	I-43d	<i>a</i> = 10.69	<i>a</i> = 10.6
		<i>a</i> = 5.847	<i>a</i> = 5.848
NaB ₁₅	Imam	<i>b</i> = 8.415	<i>b</i> = 8.426
		<i>c</i> = 10.298	<i>c</i> = 10.295
		<i>a</i> = 18.695	<i>a</i> = 18.636
Na_3B_{20}	Cmmm	<i>b</i> = 5.701	<i>b</i> = 5.693
		<i>c</i> = 4.151	<i>c</i> = 4.158
		<i>a</i> = 12.153	<i>a</i> = 12.151
No S:	C2/2	<i>b</i> = 6.545	<i>b</i> = 6.563
1104014		<i>c</i> = 11.132	<i>c</i> = 11.109
		$\beta = 118.9$	$\beta = 90.0$
	•	•	•

Na ₈ Si ₄₆	Pm-3n	<i>a</i> = 10.19	<i>a</i> = 12.31
Se. C.	P 42.0	<i>a</i> = 7.5	<i>a</i> = 7.51
5015019	F-421C	<i>c</i> = 15.0	<i>c</i> = 14.612
		<i>a</i> = 8.392	<i>a</i> = 8.381
SiB ₃	Imma	<i>b</i> = 12.568	<i>b</i> = 12.588
		<i>c</i> = 6.213	<i>c</i> = 6.223
SiC	F-43m	<i>a</i> = 4.36	<i>a</i> = 4.38
TiV	Im-3m	<i>a</i> = 3.159	<i>a</i> = 3.103
		<i>a</i> = 4.917	<i>a</i> = 4.899
V_2N	P-31m	<i>c</i> = 4.568	<i>c</i> = 4.522
		$\gamma = 120.0$	$\gamma = 120.0$
V C:	I.4 /ma area	<i>a</i> = 9.429	<i>a</i> = 9.393
v 5513	14/1110111	<i>c</i> = 4.756	<i>c</i> = 4.715
		<i>a</i> = 18.02	<i>a</i> = 17.99
$Al(BH_4)_3$	Pna2 ₁	<i>b</i> = 6.14	<i>b</i> = 6.12
		<i>c</i> = 6.20	<i>c</i> = 6.20
		<i>a</i> = 3.377	<i>a</i> = 3.385
Al_2MgC_2	P-3m	<i>c</i> = 5.817	<i>c</i> = 5.82
		$\gamma = 120.0$	$\gamma = 120.0$
Al ₁₈ Mg ₃ Ti ₂	Fd-3ms	<i>a</i> = 14.788	<i>a</i> = 14.775
		<i>a</i> = 2.528	<i>a</i> = 2.56
BC_2N	Pmm2	b = 2.502	<i>b</i> = 2.533
		<i>c</i> = 3.587	<i>c</i> = 3.637
		<i>a</i> = 3.791	<i>a</i> = 3.651
СЦИ	D21/a	<i>b</i> = 12.412	<i>b</i> = 12.012
$C_2\Pi_4\Pi_4$	F21/C	<i>c</i> = 9.113	<i>c</i> = 9.189
		$\beta = 91.49$	$\beta = 91.32$
		<i>a</i> = 4.621	<i>a</i> = 4.501
		b = 8.585	<i>b</i> = 8.415
СЦМ	D 1	<i>c</i> = 9.271	<i>c</i> = 9.174
$C_2H_{18}N_{18}$	Г-1	$\alpha = 108.49$	$\alpha = 109.353$
		$\beta = 95.29$	$\beta = 95.17$
		$\gamma = 102.99$	$\gamma = 103.09$
		<i>a</i> = 7.57	<i>a</i> = 7.63
$C_2N_2(NH)$	$Cmc2_1$	<i>b</i> = 4.44	<i>b</i> = 4.48
		c = 4.0	c = 4.04
CatAl-Mg	Phom	<i>a</i> = 6.179	<i>a</i> = 6.191
Ca4AI3Mg		<i>b</i> = 24.211	<i>b</i> = 24.248

		<i>c</i> = 5.886	<i>c</i> = 5.905
CaAlSi	D 6m2	<i>a</i> = 4.2	<i>a</i> = 4.21
	F-01112	c = 4.4	<i>c</i> = 4.41
		<i>a</i> = 8.78	<i>a</i> = 8.75
$Ca(BH_4)_2$	F2dd	<i>b</i> = 13.02	<i>b</i> = 12.94
		<i>c</i> = 7.41	<i>c</i> = 7.37
		<i>a</i> = 14.328	<i>a</i> = 14.307
		<i>b</i> = 7.164	<i>b</i> = 7.152
$CaB_{12}H_{12}$	C2/c	<i>c</i> = 11.017	<i>c</i> = 11.001
		$\alpha = \beta = 89.84$	$\alpha = \beta = 89.85$
		$\gamma = 122.07$	$\gamma = 122.07$
		<i>a</i> = 12.446	<i>a</i> = 12.855
C ₂ C N	C2/a	b = 6.08	<i>b</i> = 6.261
CaC ₄ IN ₆	C2/C	c = 7.898	c = 7.674
		$\beta = 145.2$	$\beta = 149.86$
		<i>a</i> = 11.44	<i>a</i> = 11.51
$Ca_4N_2(CN_2)$	Pnma	<i>b</i> = 3.58	<i>b</i> = 3.58
		<i>c</i> = 13.84	<i>c</i> = 13.92
	P42/MNM	<i>a</i> = 14.523	<i>a</i> = 14.551
$Ca_{11}N_6(CN_2)_2$		<i>c</i> = 3.608	<i>c</i> = 3.6221
	Pbca	<i>a</i> = 5.123	<i>a</i> = 5.163
CaSiN ₂		b = 10.207	<i>b</i> = 10.279
		<i>c</i> = 14.823	<i>c</i> = 14.933
		<i>a</i> = 10.584	<i>a</i> = 10.616
Ca ₂ Si ₅ N ₈	Pbca	<i>b</i> = 9.652	<i>b</i> = 9.675
		<i>c</i> = 13.663	<i>c</i> = 13.669
		<i>a</i> = 9.836	<i>a</i> = 9.899
Car(SinNr)	C12/C1	<i>b</i> = 6.0519	b = 6.094
Ca5(512146)	012/01	c = 12.757	<i>c</i> = 14.736
		$\beta = 100.20$	$\beta = 121.155$
		<i>a</i> = 5.98	<i>a</i> = 6.01
		<i>b</i> = 6.01	b = 6.04
CartiN	P_1	<i>c</i> = 8.99	<i>c</i> = 9.02
Ca411114	1-1	$\alpha = 71.57$	$\alpha = 71.62$
		$\beta = 79.47$	$\beta = 79.32$
		$\gamma = 68.26$	$\gamma = 68.07$
HaCNa	P2./c	<i>a</i> = 6.679	<i>a</i> = 6.555
1190119	121/0	<i>b</i> = 7.722	<i>b</i> = 7.546

		<i>c</i> = 13.143	<i>c</i> = 12.901
		$\beta = 95.44$	$\beta = 95.71$
KBH ₄	Fm-3m	<i>a</i> = 6.71	<i>a</i> = 6.69
VDU	D4 /nma	<i>a</i> = 4.68	<i>a</i> = 4.71
KD114	F 42/1111C	<i>c</i> = 6.57	<i>c</i> = 6.61
		<i>a</i> = 12.49	<i>a</i> = 12.71
VD U	C2	<i>b</i> = 7.11	<i>b</i> = 7.22
$\mathbf{KD}_{21}\mathbf{\Pi}_{18}$	C2	<i>c</i> = 16.94	<i>c</i> = 17.04
		$\beta = 93.81$	$\beta = 94.1$
$K_2B_6H_6$	Fm-3m	<i>a</i> = 8.839	<i>a</i> = 8.897
		<i>a</i> = 12.855	<i>a</i> = 11.993
	D121/n1	<i>b</i> = 11.178	<i>b</i> = 9.748
$\mathbf{K}_{2}(\mathbf{D}_{10}\mathbf{\Pi}_{10})$	F121/111	<i>c</i> = 6.823	<i>c</i> = 9.028
		$\beta = 93.357$	$\beta = 91.93$
$K_2B_{12}H_{12}$	Fm-3	<i>a</i> = 10.629	<i>a</i> = 10.639
		<i>a</i> = 8.665	<i>a</i> = 8.827
		<i>b</i> = 8.873	<i>b</i> = 9.296
KCN	P-1	<i>c</i> = 3.89	c = 4.009
KC41N3		$\alpha = 86.7$	$\alpha = 83.8$
		$\beta = 90.1$	$\beta = 90.9$
		$\gamma = 105$	$\gamma = 104.3$
		<i>a</i> = 4.586	<i>a</i> = 4.458
KNHa	$P2_1/m$	<i>b</i> = 3.904	<i>b</i> = 3.745
	F 2]/III	<i>c</i> = 6.223	<i>c</i> = 6.111
		$\beta = 95.8$	$\beta = 94.958$
		<i>a</i> = 6.839	<i>a</i> = 6.834
$(K(NH_2))(NH_3)_2$	C222 ₁	<i>b</i> = 9.953	<i>b</i> = 9.681
		<i>c</i> = 6.590	<i>c</i> = 6.5711
		<i>a</i> = 5.847	<i>a</i> = 5.852
LiAlB ₁₄	Imam	<i>b</i> = 8.143	b = 8.142
		c = 10.354	<i>c</i> = 10.353
		<i>a</i> = 5.668	<i>a</i> = 5.842
$LiB_{13}C_2$	Imma	b = 10.820	<i>b</i> = 9.661
		<i>c</i> = 8.040	<i>c</i> = 8.923
		<i>a</i> = 4.706	<i>a</i> = 4.663
LiaBiaCa	AMM2	<i>b</i> = 5.318	<i>b</i> = 5.553
	AIVIIVI2	<i>c</i> = 5.318	<i>c</i> = 5.553
		$\alpha = 115.798$	$\alpha = 100.47$

		<i>a</i> = 6.2	<i>a</i> = 5.646
LiBH	PNMA	<i>b</i> = 3.0	<i>b</i> = 3.076
		<i>c</i> = 6.3	<i>c</i> = 6.505
		<i>a</i> = 8.1	<i>a</i> = 8.322
Li(BH ₂)	PNMA	<i>b</i> = 3.0	<i>b</i> = 3.037
		<i>c</i> = 5.9	<i>c</i> = 5.485
$Li_2B_{12}H_{12}$	Pa3	<i>a</i> = 9.577	<i>a</i> = 9.580
Li ₍ PH)	РЗН	<i>a</i> = 5.182	<i>a</i> = 5.356
LI3(DI16)	K3-11	$\alpha = \beta = \gamma = 91.11$	$\alpha = \beta = \gamma = 94.16$
		<i>a</i> = 6.106	<i>a</i> = 6.118
$Li_2B_{12}Si_2$	Cmce	<i>b</i> = 10.979	<i>b</i> = 11.012
		<i>c</i> = 8.405	<i>c</i> = 8.43
LiMgHa	R3c	<i>a</i> = 4.96	<i>a</i> = 4.94
Liivigi 13	KSC	<i>c</i> = 13.34	<i>c</i> = 13.24
Li ₂ MgSi	Fm-3m	<i>a</i> = 12.83	<i>a</i> = 12.748
		<i>a</i> = 9.222	<i>a</i> = 9.277
LiN_3Si_2	$Cmc2_1$	<i>b</i> = 5.296	<i>b</i> = 5.329
		c = 4.78	<i>c</i> = 4.812
		<i>a</i> = 4	<i>a</i> = 4.37
LiNa ₂ N	P6/mmm	c = 4.2	<i>c</i> = 3.838
		$\gamma = 120$	$\gamma = 120$
		<i>a</i> = 6.731	<i>a</i> = 6.735
L iNa-Na	C	b = 5.944	<i>b</i> = 5.949
	C_2	<i>c</i> = 6.383	<i>c</i> = 6.389
		$\beta = 91.18$	$\beta = 91.15$
L is No. No.	P4/nmm	<i>a</i> = 3.895	<i>a</i> = 4.066
	1 4/ 1111111	c = 6.114	<i>c</i> = 6.099
		<i>a</i> = 3.65	<i>a</i> = 3.62
Li ₂ NaN	P6/nmm	<i>c</i> = 4.6	<i>c</i> = 4.716
		$\gamma = 120$	$\gamma = 120$
		<i>a</i> = 3.854	<i>a</i> = 3.853
L inNanNa	Pm	<i>b</i> = 3.676	b = 4.208
L131Na31N2	1 111	<i>c</i> = 6.32	c = 7.272
		$\beta = 90.31$	$\beta = 89.85$
$Li_4Na_2N_2$	Fm-3m	a = 5.265	a = 5.404
L icNaNa	P4/mmm	a = 3.965	a = 3.705
		<i>c</i> = 5.504	<i>c</i> = 5.186
Li ₃ NaSi ₆	Pnma	a = 17.972	a = 18.021

		<i>b</i> = 3.788	<i>b</i> = 3.804
		<i>c</i> = 10.299	<i>c</i> = 10.331
MadleSie	P 3m1	<i>a</i> = 4.05	<i>a</i> = 4.08
WIGAI2512	F-51111	<i>c</i> = 6.74	<i>c</i> = 6.69
		<i>a</i> = 7.27	<i>a</i> = 7.26
MaD C	C2/2	b = 8.78	b = 8.77
MgB ₁₂ C ₂	C2/C	<i>c</i> = 7.28	<i>c</i> = 7.25
		$\beta = 105.33$	$\beta = 105.32$
Ma R. C	$\mathbf{D} 4n2$	<i>a</i> = 8.94	<i>a</i> = 8.96
Mg ₂ D ₂₄ C	r-4112	c = 5.07	<i>c</i> = 5.09
		<i>a</i> = 11.689	<i>a</i> = 11.687
MaD H	C^{2}/m	<i>b</i> = 8.712	<i>b</i> = 8.711
NigD ₁₂ Π ₁₂	C2/III	<i>c</i> = 6.907	c = 6.905
		$\beta = 122.47$	$\beta = 122.5$
		<i>a</i> = 10.98	<i>a</i> = 11.03
$MgB_{12}Si_2$	Pnma	<i>b</i> = 6.11	<i>b</i> = 6.13
		<i>c</i> = 8.36	<i>c</i> = 8.39
		<i>a</i> = 6.171	<i>a</i> = 6.443
MgC_4N_6	Pnnm	<i>b</i> = 7.17	b = 7.289
		c = 7.404	<i>c</i> = 7.429
Mg ₇ TiH ₁₆	Fm3m	<i>a</i> = 9.564	<i>a</i> = 9.341
		<i>a</i> = 9.53	<i>a</i> = 9.768
N_2BH_7	Pbcn	<i>b</i> = 5.12	b = 5.237
		<i>c</i> = 13.01	c = 12.672
		<i>a</i> = 18.096	<i>a</i> = 18.237
$N_2B_{10}H_{18}$	Pnma	<i>b</i> = 7.373	b = 7.528
		<i>c</i> = 7.223	c = 7.284
NaBaHa	P4,2,2	a = 5.428	<i>a</i> = 5.63
1303116	1 73212	<i>c</i> = 16.279	c = 17.223
		<i>a</i> = 4.403	<i>a</i> = 4.442
$N_{3}B_{3}H_{12}$	Pbcm	<i>b</i> = 12.21	b = 12.382
		<i>c</i> = 11.227	c = 11.272
		<i>a</i> = 8.318	a = 8.611
N ₄ B ₆ H ₁₁	$P2_{1/c}$	<i>b</i> = 5.951	<i>b</i> = 6.263
	121/0	<i>c</i> = 19.265	c = 20.044
		$\beta = 95.3$	$\beta = 94.6$
N ₄ R ₁₀ H ₀	$C^{2/c}$	$a = 1\overline{1.411}$	$a = 1\overline{1.945}$
14010118		<i>b</i> = 6.658	<i>b</i> = 7.373

		<i>c</i> = 13.058	<i>c</i> = 15.268
			$\alpha = 91.09$
		<i>a</i> = 7.7	<i>a</i> = 7.813
		b = 7.7	b = 7.229
NDU	C2/a	c = 9.772	<i>c</i> = 9.473
N ₄ D ₁₀ Π ₂₂	C2/C	$\alpha = 83.872$	$\alpha = 77.29$
		$\beta = 83.872$	$\beta = 76.99$
		$\gamma = 82.307$	$\gamma = 82.3$
		<i>a</i> = 5.395	<i>a</i> = 5.356
NH ₃ BH ₃	Pmn21	b = 4.887	<i>b</i> = 4.796
		<i>c</i> = 4.986	<i>c</i> = 4.921
$(NH_4)_2B_{12}H_{12}$	Fm-3	<i>a</i> = 10.88	<i>a</i> = 10.79
		<i>a</i> = 6.856	<i>a</i> = 6.726
(NH ₂)CN	Pbca	b = 6.628	b = 6.597
		c = 9.147	<i>c</i> = 8.916
		<i>a</i> = 6.44	<i>a</i> = 6.38
NH ₄ HCN ₂	$P2_{1}2_{1}2$	<i>b</i> = 6.58	<i>b</i> = 6.5
		<i>c</i> = 7.4	<i>c</i> = 7.3
	P4/mnc	<i>a</i> = 6.769	<i>a</i> = 6.7
Na5A13 1 14		<i>c</i> = 10.289	<i>c</i> = 10.2
NaBH ₄	Fm-3m	<i>a</i> = 6.15	<i>a</i> = 6.02
NoDU	D 42 a	<i>a</i> = 4.35	<i>a</i> = 4.31
Νασπ4	P-421C	<i>c</i> = 5.86	<i>c</i> = 5.82
		<i>a</i> = 10.283	<i>a</i> = 9.846
N_{0} (D U)	D121/n1	<i>b</i> = 13.022	<i>b</i> = 12.153
$Na_2(D_{10}\Pi_{10})$	F121/111	<i>c</i> = 6.673	<i>c</i> = 8.104
		$\beta = 93.754$	$\beta = 93.074$
		<i>a</i> = 5.717	<i>a</i> = 5.737
$N_{0}(\mathbf{P}\mathbf{N}_{1})$	D2 /o	<i>b</i> = 7.931	<i>b</i> = 7.966
INd3(DIN2)	r 21/C	c = 7.883	<i>c</i> = 7.9
		$\beta = 111.32$	$\beta = 111.29$
		<i>a</i> = 11.048	<i>a</i> = 11.397
Na ₂ C ₂ N ₂	P2./c	<i>b</i> = 23.381	<i>b</i> = 24.101
11/1/30-6119	121/0	<i>c</i> = 3.516	<i>c</i> = 3.937
		$\beta = 97.913$	$\beta = 97.913$
		a = 3.228	a = 3.285
Sc ₂ AlC	P63/MMC	c = 14.873	<i>c</i> = 15.043
		$\gamma = 120.0$	$\gamma = 120.0$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ti ₂ AlC	P6 ₂ /mmc	<i>a</i> = 2.97	<i>a</i> = 3.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 03/111110	<i>c</i> = 13.22	<i>c</i> = 13.71
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<i>a</i> = 6.802	<i>a</i> = 6.777
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ti_6Si_2B	P-62m	<i>c</i> = 3.338	<i>c</i> = 3.312
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\gamma = 120$	$\gamma = 120$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<i>a</i> = 5.088	<i>a</i> = 5.065
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$V_{12}Al_3C_8$	P63/MCM	<i>c</i> = 22.983	<i>c</i> = 22.638
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\gamma = 120$	$\gamma = 120$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V C:D	I4/mom	<i>a</i> = 5.81	<i>a</i> = 5.774
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V 551D2	14/mcm	c = 10.79	c = 10.762
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<i>a</i> = 5.428	<i>a</i> = 5.379
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		D2 /a	<i>b</i> = 9.908	<i>b</i> = 11.302
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{AINC}_{3}\operatorname{H}_{10}$	$P2_1/C$	<i>c</i> = 9.963	c = 10.271
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\beta = 99.254$	$\beta = 99.2$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<i>a</i> = 7.973	<i>a</i> = 7.986
$\frac{c = 6.976}{c = 7.103}$ $\frac{c = 6.976}{b = 16.663}$ $\frac{a = 8.369}{b = 17.002}$ $\frac{c = 11.989}{\beta = 100.34}$ $\frac{c = 12.249}{\beta = 100.34}$ $\frac{a = 10.334}{b = 10.334}$ $\frac{a = 10.449}{b = 10.873}$ $\frac{a = 10.334}{b = 11.199}$ $\frac{c = 17.524}{c = 17.78}$ $\frac{a = 6.976}{c = 14.21}$ $\frac{c = 14.563}{c = 14.21}$ $\frac{a = 11.10}{c = 14.563}$ $\frac{a = 11.10}{c = 14.563}$ $\frac{a = 9.10}{c = 4.92}$ $\frac{a = 9.10}{c = 6.34}$ $\frac{a = 9.10}{\beta = 93.19}$ $\frac{a = 10}{\beta = 93.1}$ $\frac{a = 10}{\beta = 93.19}$ $\frac{a = 10.2}{\beta = 93.1}$ $\frac{a = 10}{\beta = 93.19}$ $\frac{a = 10.2}{\beta = 93.1}$ $\frac{a = 10.4}{c = 10.142}$ $\frac{a = 9.095}{c = 11.202}$ $\frac{a = 9.025}{c = 11.202}$	BCH ₅ N ₂	$Pna2_1$	b = 6.445	<i>b</i> = 6.515
$\begin{array}{c cccc} B_{10}C_{6}H_{30}N_{2} & P2_{1}/c & \begin{array}{c} a=8.369 & a=8.586 \\ b=16.663 & b=17.002 \\ c=11.989 & c=12.249 \\ \beta=100.34 & \beta=100.67 \\ \end{array} \\ \begin{array}{c} a=10.334 & a=10.449 \\ b=10.873 & b=11.199 \\ c=17.524 & c=17.78 \\ \end{array} \\ \begin{array}{c} BC_{4}KN_{4} & I4_{1/a} & a=6.976 & a=7.151 \\ c=14.21 & c=14.563 \\ \end{array} \\ \begin{array}{c} BC_{4}KN_{4} & I4_{1/a} & a=6.976 & a=7.151 \\ c=14.21 & c=14.563 \\ \end{array} \\ \begin{array}{c} CH_{3}NH_{2}BH_{3} & Pnma & b=6.58 & b=6.35 \\ c=4.92 & c=4.88 \\ \end{array} \\ \begin{array}{c} BC_{4}NH_{2}BH_{3} & Pnma & b=6.58 & b=6.35 \\ c=4.92 & c=4.88 \\ \end{array} \\ \begin{array}{c} BC_{4}(NH_{2}BH_{3})_{2} & C121 & b=4.37 & b=4.29 \\ c=6.44 & c=6.34 \\ \beta=93.19 & \beta=93.1 \\ \end{array} \\ \begin{array}{c} BC_{4}(NH_{2}BH_{3})_{2} & C222_{1} & b=5.8 & b=5.82 \\ c=10.14 & c=10.142 \\ \end{array} \\ \begin{array}{c} BC_{4}(NH_{2}H_{4})_{4} & P4/ncc & a=9.095 \\ R_{5}C_{2}HN_{4} & P4/ncc & a=9.095 \\ c=11.029 & c=11.202 \\ \end{array} $			<i>c</i> = 6.976	<i>c</i> = 7.103
$ \begin{array}{c cccc} B_{10}C_{6}H_{30}N_{2} & P2_{1}/c & b = 16.663 & b = 17.002 \\ c = 11.989 & c = 12.249 \\ \beta = 100.34 & \beta = 100.67 \\ \end{array} \\ \begin{array}{c ccccccc} B_{20}C_{3}H_{30}N_{2} & P2_{1}2_{1}2_{1} & b = 10.873 & b = 11.199 \\ c = 17.524 & c = 17.78 \\ \end{array} \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<i>a</i> = 8.369	<i>a</i> = 8.586
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	РСИМ	D2 /a	<i>b</i> = 16.663	b = 17.002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$D_{10}C_6\Pi_{30}N_2$	r 21/C	<i>c</i> = 11.989	<i>c</i> = 12.249
$\begin{array}{c cccc} B_{20}C_{3}H_{30}N_{2} & P2_{1}2_{1}2_{1} & a = 10.334 & a = 10.449 \\ B_{20}C_{3}H_{30}N_{2} & P2_{1}2_{1}2_{1} & b = 10.873 & b = 11.199 \\ c = 17.524 & c = 17.78 & c = 17.78 & c = 17.78 & c = 14.21 & c = 14.563 & c = 4.92 & c = 4.88 & c = 6.34 & c = 6.34 & c = 6.34 & \beta = 93.19 & \beta = 93.1 & c = 10.14 & c = 10.142 & c = 11.029 & c = 11.202 $			$\beta = 100.34$	$\beta = 100.67$
$ \begin{array}{c cccc} B_{20}C_{3}H_{30}N_{2} & P2_{1}2_{1}2_{1} & b=10.873 & b=11.199 \\ c=17.524 & c=17.78 \\ \hline & c=17.78 \\ \hline & c=14.21 & c=14.563 \\ \hline & c=4.92 & c=4.88 \\ \hline & c=6.34 & b=4.29 \\ c=6.44 & c=6.34 \\ \hline & \beta=93.19 & \beta=93.1 \\ \hline & KAl(NH_{2})_{4} & C222_{1} & b=5.8 & b=5.82 \\ \hline & c=10.14 & c=10.142 \\ \hline & K_{5}C_{2}HN_{4} & P4/ncc & a=9.095 & a=9.225 \\ \hline & c=11.029 & c=11.202 \\ \hline \end{array} $			<i>a</i> = 10.334	<i>a</i> = 10.449
$ \begin{array}{c c} c = 17.524 & c = 17.78 \\ \hline & c = 17.78 \\ \hline & a = 6.976 & a = 7.151 \\ \hline & c = 14.21 & c = 14.563 \\ \hline & c = 14.21 & c = 14.563 \\ \hline & c = 14.21 & c = 14.563 \\ \hline & c = 14.21 & c = 14.563 \\ \hline & c = 14.21 & c = 14.563 \\ \hline & a = 11.10 & a = 11.07 \\ \hline & b = 6.58 & b = 6.35 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 4.92 & c = 4.88 \\ \hline & c = 6.34 & c = 6.34 \\ \hline & \beta = 93.19 & \beta = 93.1 \\ \hline & KAl(NH_2)_4 & C222_1 & b = 5.8 & b = 5.82 \\ \hline & c = 10.14 & c = 10.142 \\ \hline & K_5C_2HN_4 & P4/ncc & a = 9.095 & a = 9.225 \\ \hline & c = 11.202 & c = 11.202 \\ \hline \end{array}$	$B_{20}C_3H_{30}N_2$	$P2_12_12_1$	<i>b</i> = 10.873	<i>b</i> = 11.199
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			c = 17.524	<i>c</i> = 17.78
$\frac{14_{1}/a}{14_{1}/a} = \frac{14.21}{c = 14.263}$ $\frac{14_{1}/a}{c = 14.21} = \frac{14.563}{c = 14.563}$ $\frac{a = 11.10}{a = 11.07}$ $\frac{a = 11.10}{b = 6.58} = \frac{14.563}{b = 6.35}$ $\frac{c = 4.92}{c = 4.88}$ $\frac{a = 9.10}{b = 4.37} = \frac{10}{b = 4.29}$ $\frac{c = 6.34}{c = 6.34}$ $\frac{a = 10}{\beta = 93.19} = \frac{10.2}{\beta = 93.1}$ $\frac{a = 10}{b = 5.8} = \frac{10.2}{b = 5.82}$ $\frac{c = 10.14}{c = 10.142}$ $\frac{c = 10.142}{c = 10.142}$ $\frac{c = 11.02}{c = 11.029} = \frac{14.563}{c = 11.07}$	DC VN		<i>a</i> = 6.976	<i>a</i> = 7.151
$\begin{array}{c cccc} CH_{3}NH_{2}BH_{3} & Pnma & a = 11.10 & a = 11.07 \\ b = 6.58 & b = 6.35 & c = 4.88 \\ \hline c = 4.92 & c = 4.88 & a = 9.10 & a = 9.12 \\ b = 4.37 & b = 4.29 & c = 6.34 & b = 4.29 & c = 6.34 & b = 93.1 & a = 10 & a = 10.2 & b = 93.1 & a = 10 & a = 10.2 & b = 5.8 & b = 5.82 & c = 10.14 & c = 10.142 & c = 10.142 & c = 10.142 & c = 10.142 & c = 11.029 & c = 11.202 $	DC4KIN4	141/a	c = 14.21	<i>c</i> = 14.563
$\begin{array}{c cccc} \mathrm{CH_3NH_2BH_3} & \mathrm{Pnma} & b = 6.58 & b = 6.35 \\ \hline c = 4.92 & c = 4.88 \\ \\ & & & \\ \mathrm{Ca(NH_2BH_3)_2} \\ \end{array} \begin{array}{c} \mathrm{C121} & & & & \\ \mathrm{C121} & & & \\ C$			<i>a</i> = 11.10	<i>a</i> = 11.07
$ \begin{array}{c c} c = 4.92 & c = 4.88 \\ \hline \\ Ca(NH_2BH_3)_2 & C121 & a = 9.10 & a = 9.12 \\ b = 4.37 & b = 4.29 \\ c = 6.44 & c = 6.34 \\ \beta = 93.19 & \beta = 93.1 \\ \hline \\ KAl(NH_2)_4 & C222_1 & a = 10 & a = 10.2 \\ C222_1 & b = 5.8 & b = 5.82 \\ c = 10.14 & c = 10.142 \\ \hline \\ K_5C_2HN_4 & P4/ncc & a = 9.095 & a = 9.225 \\ c = 11.029 & c = 11.202 \\ \hline \end{array} $	CH ₃ NH ₂ BH ₃	Pnma	<i>b</i> = 6.58	<i>b</i> = 6.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<i>c</i> = 4.92	<i>c</i> = 4.88
$\begin{array}{c c} Ca(NH_2BH_3)_2 & C121 & b = 4.37 & b = 4.29 \\ c = 6.44 & c = 6.34 \\ \beta = 93.19 & \beta = 93.1 \\ \hline KAl(NH_2)_4 & C222_1 & b = 5.8 & b = 5.82 \\ c = 10.14 & c = 10.142 \\ \hline K_5C_2HN_4 & P4/ncc & a = 9.095 & a = 9.225 \\ c = 11.029 & c = 11.202 \\ \hline \end{array}$			<i>a</i> = 9.10	<i>a</i> = 9.12
Ca(NH ₂ BH ₃) ₂ C121 $c = 6.44$ $c = 6.34$ $\beta = 93.19$ $\beta = 93.1$ KAl(NH ₂) ₄ C222 ₁ $a = 10$ $a = 10.2$ KAl(NH ₂) ₄ C222 ₁ $b = 5.8$ $b = 5.82$ $c = 10.14$ $c = 10.142$ K ₅ C ₂ HN ₄ P4/ncc $a = 9.095$ $a = 9.225$ $c = 11.029$ $c = 11.202$		C121	<i>b</i> = 4.37	<i>b</i> = 4.29
$\begin{array}{c cccc} \beta = 93.19 & \beta = 93.1 \\ \hline & & & & & \\ & & & & \\ & & & \\ & &$	$Ca(NH_2BH_3)_2$	C121	<i>c</i> = 6.44	<i>c</i> = 6.34
KAl(NH2)4C2221 $a = 10$ $b = 5.8$ $c = 10.14$ $a = 10.2$ $b = 5.82$ $c = 10.142$ K5C2HN4P4/ncc $a = 9.095$ $c = 11.029$ $a = 9.225$ $c = 11.202$			$\beta = 93.19$	$\beta = 93.1$
KAl(NH2)4C2221 $b = 5.8$ $b = 5.82$ $c = 10.14$ $c = 10.142$ K5C2HN4P4/ncc $a = 9.095$ $a = 9.225$ $c = 11.029$ $c = 11.202$			<i>a</i> = 10	<i>a</i> = 10.2
$c = 10.14$ $c = 10.142$ $K_5C_2HN_4$ P4/ncc $a = 9.095$ $c = 11.029$ $a = 9.225$ $c = 11.202$	KAl(NH ₂) ₄	C222 ₁	<i>b</i> = 5.8	<i>b</i> = 5.82
$K_5C_2HN_4$ P4/ncc $a = 9.095$ $c = 11.029$ $a = 9.225$ $c = 11.202$			<i>c</i> = 10.14	<i>c</i> = 10.142
K ₅ C ₂ П N ₄ r ⁴ /IICC $c = 11.029$ $c = 11.202$		D4/maa	<i>a</i> = 9.095	<i>a</i> = 9.225
	$\kappa_5 U_2 \pi i N_4$	r4/ncc	<i>c</i> = 11.029	<i>c</i> = 11.202

		<i>a</i> = 6.767	<i>a</i> = 6.797
KCaNaH	$P2_1/c$	<i>b</i> = 11.68	b = 11.834
KCall3116	121/0	<i>c</i> = 6.624	c = 6.797
		$\beta = 106.7$	$\beta = 106.82$
		<i>a</i> = 7.087	<i>a</i> = 7.229
K(HCN ₂)	$P2_12_12_1$	<i>b</i> = 9.09	<i>b</i> = 9.172
		<i>c</i> = 9.014	<i>c</i> = 9.158
K.LiAlH.	R-3m	<i>a</i> = 5.62	<i>a</i> = 5.62
$\mathbf{K}_2 \mathbf{L} \mathbf{K} \mathbf{H} \mathbf{H}_6$		c = 27.4	<i>c</i> = 27.31
	I4./omd	<i>a</i> = 7.238	<i>a</i> = 8.208
KLI3(INH2)4	14 ₁ /ama	<i>c</i> = 23.956	<i>c</i> = 23.699
	I.4 /-	<i>a</i> = 7.18	<i>a</i> = 7.678
KL 171 \ 811 ₁₆	141/a	<i>c</i> = 44.39	c = 46.545
	D/2/m	<i>a</i> = 6.872	<i>a</i> = 6.866
K2L1(1112)3	1 42/111	<i>c</i> = 11.706	<i>c</i> = 11.726
		<i>a</i> = 7.455	<i>a</i> = 7.255
K.Mg(NH.)	P2./c	b = 7.024	<i>b</i> = 7.255
K ₂ ivig (INI1 ₂) ₄	r 21/C	<i>c</i> = 13.545	<i>c</i> = 13.626
		$\beta = 105.6$	$\beta = 105.25$
		<i>a</i> = 5.733	<i>a</i> = 5.743
K ₂ N ₂ A1H ₂	P21/c	b = 5.754	b = 5.7492
152180751116		c = 8.128	<i>c</i> = 8.0934
		$\beta = 89.97$	$\beta = 89.99$
K ₂ Na(NH ₂) ₂	P42/m	<i>a</i> = 7.351	<i>a</i> = 7.514
112110(11112)3	1 1 2/ m	<i>c</i> = 13.129	<i>c</i> = 13.314
$K_3Si_6N_{11}H_6$	P4 ₃ 32	<i>a</i> = 10.789	<i>a</i> = 10.797
		<i>a</i> = 8.989	<i>a</i> = 8.915
LiAlMg10H24	P121	b = 8.985	<i>b</i> = 8.942
Lin 111113101124	1121	c = 4.485	<i>c</i> = 4.449
		$\beta = 89.655$	$\beta = 89.65$
$\operatorname{Li}(\mathbf{B}(\mathbf{CN})_{4})$	P43m	<i>a</i> = 7.849	<i>a</i> = 7.7822
	1 4511	$\alpha = \beta = \gamma = 60.0$	$\alpha = \beta = \gamma = 60.0$
Li ₂ Ca(NH) ₂	P-3m1	$a = 3.5\overline{7}$	$a = 3.5\overline{8}$
	1 5111	<i>c</i> = 5.95	<i>c</i> = 5.84
		<i>a</i> = 7.91	<i>a</i> = 7.78
LiK(BH ₄) ₂	Pnma	b = 4.49	<i>b</i> = 4.43
		<i>c</i> = 13.84	<i>c</i> = 13.72
Li(NH ₂ BH ₃)	Pbca	<i>a</i> = 7.11	<i>a</i> = 6.92

		<i>b</i> = 13.93	<i>b</i> = 13.52
		<i>c</i> = 5.15	c = 5.07
		<i>a</i> = 7.483	<i>a</i> = 7.397
$(\mathbf{I}_{\mathbf{i}}^{\mathbf{i}}(\mathbf{N}\mathbf{U}_{\mathbf{i}})) (\mathbf{P}_{\mathbf{i}}\mathbf{U}_{\mathbf{i}}) (\mathbf{N}\mathbf{U}_{\mathbf{i}})$	P21/c	<i>b</i> = 11.871	<i>b</i> = 11.649
$(LI(INII_3)_4)_2(D_6II_6)(INIII_3)_2$		c = 10.605	<i>c</i> = 10.449
		$\beta = 95.371$	$\beta = 95.21$
		<i>a</i> = 5.165	<i>a</i> = 4.777
LiNa ₂ AlH ₆	P21/c	<i>b</i> = 5.251	<i>b</i> = 4.715
		<i>c</i> = 7.339	<i>c</i> = 6.613
	D4 /m	<i>a</i> = 6.28	<i>a</i> = 6.17
$Lina_2(in\pi_2)_3$	P42/111	<i>c</i> = 11.15	<i>c</i> = 10.90
	D 42a	<i>a</i> = 6.08	<i>a</i> = 6.45
LISC(DH ₄) ₄	P-420	<i>c</i> = 12.03	<i>c</i> = 11.95
		<i>a</i> = 17.49	<i>a</i> = 17.73
$Mg(BH_4)_2(NH_3)_2$	Pbca	<i>b</i> = 9.41	<i>b</i> = 9.35
		<i>c</i> = 8.73	<i>c</i> = 8.68
	141/2	<i>a</i> = 7.132	<i>a</i> = 7.453
$(\mathbf{NH}_4)\mathbf{B}(\mathbf{CN})_4$	141/a	c = 14.745	<i>c</i> = 14.617
		<i>a</i> = 7.328	<i>a</i> = 6.565
		b = 6.047	<i>b</i> = 6.353
$\operatorname{INAAI}(\operatorname{INH}_2)_4$	$P2_1/C$	<i>c</i> = 13.151	<i>c</i> = 15.362
		$\beta = 94.04$	$\beta = 94.3$
NaB(CN) ₄	Fd-3mZ	<i>a</i> = 11.68	<i>a</i> = 11.874
		<i>a</i> = 9.71	<i>a</i> = 10.143
SIC H N	D2 /a	<i>b</i> = 11.11	<i>b</i> = 11.599
512C711181N2	$F Z_1/C$	<i>c</i> = 11.88	c = 12.422
		$\beta = 102.3$	$\beta = 103.1$
		<i>a</i> = 8.29	<i>a</i> = 8.637
		<i>b</i> = 12.016	<i>b</i> = 12.503
VC.H.N.	D 1	<i>c</i> = 13.835	c = 14.479
V C811241N4	Γ-1	$\alpha = 75.662$	$\alpha = 75.89$
		$\beta = 79.404$	$\beta = 79.47$
		$\gamma = 84.966$	$\gamma = 85.3$
LIAICHUN	IA.	<i>a</i> = 14	<i>a</i> = 14.128
	14]	<i>c</i> = 9.275	<i>c</i> = 9.571
		<i>a</i> = 8.776	<i>a</i> = 9.077
$LiSi_3C_9H_{27}N_2$	P-1	<i>b</i> = 9.579	<i>b</i> = 9.875
		c = 21.949	c = 22.544

		$\alpha = 100.84$	$\alpha = 101.16$
		$\beta = 92.18$	$\beta = 91.95$
		$\gamma = 115.67$	$\gamma = 115$
$Si_2B_2C_{12}H_{37}N_5$	P2 ₁ /c	<i>a</i> = 15.785	<i>a</i> = 16.2
		<i>b</i> = 11.966	<i>b</i> = 12.212
		c = 11.804	<i>c</i> = 12.205
		$\beta = 102.19$	$\beta = 102.3$

Table S3: Multi-step reactions in which individual reactions are independent (not linked via intermediate compounds). $\Delta G_{\text{max}} - \Delta G_{\text{min}}$ is the difference between ΔG for the final step and the first step in a multi-step reaction. The $T\Delta S_{\text{conf}}$ term is given only for compounds known to have partial occupancy.

	Class I: (reactions having $(\Delta G_{\text{max}} - \Delta G_{\text{min}}) \leq 10 \text{ kJ/mol H}_2$)				
No.	Reaction	wt.%	$\frac{\Delta U_0 (T\Delta S_{\text{conf}})}{(\text{kJ/mol H}_2)}$	$\frac{\Delta G_{\text{max}}}{(\text{kJ/mol H}_2)}$	
1	Entire reaction $6LiBH_4+15Mg(BH_4)_2+MgH_2+8Si \rightarrow 8Mg_2Si+3Li_2B_{12}H_{12}+55H_2$	9.31			
	1^{st} step MgH ₂ +0.5Si $\rightarrow 0.5$ Mg ₂ Si+H ₂	0.169	37.6	1.6	
	2^{nd} step 6LiBH ₄ +15Mg(BH ₄) ₂ +7.5Si \rightarrow 7.5Mg ₂ Si+3Li ₂ B ₁₂ H ₁₂ +54H ₂	9.136	39.2		
	Entire reaction $18.33Si+40Mg(BH_4)_2+4Ca(BH_4)_2 \rightarrow 18.33Mg_2Si+3.33MgB_{12}H_{12}$ $+4CaB_{12}H_{12}+132H_2$	9.01			
2	1^{st} step 10Si+20Mg(BH ₄) ₂ +4Ca(BH ₄) ₂ \rightarrow 10Mg ₂ Si+4CaB ₁₂ H ₁₂ +72H ₂	4.914	41.2	2.4	
	2^{nd} step 8.33Si+20Mg(BH ₄) ₂ \rightarrow 8.33Mg ₂ Si+3.33MgB ₁₂ H ₁₂ +60H ₂	4.095	43.6		
	Entire reaction $5MgH_2+10Si+15Mg(BH_4)_2+6KBH_4 \rightarrow 10Mg_2Si+3K_2B_{12}H_{12}+59H_2$	7.69			
3	1^{st} step $5MgH_2+2.5Si \rightarrow 2.5Mg_2Si+5H_2$	0.652	37.6	2.6	
	2^{nd} step 7.5Si+15Mg(BH ₄) ₂ +6KBH ₄ \rightarrow 7.5Mg ₂ Si+3K ₂ B ₁₂ H ₁₂ +54H ₂	7.042	37.3 (-2.87)		
4	Entire reaction $35Si+80Mg(BH_4)_2+8KBH_4 \rightarrow 35Mg_2Si+10MgB_{12}H_{12}+4K_2B_{12}H_{12}+252H_2$	8.86			
	$1^{\text{st}} \text{ step}$ $10\text{Si}+20\text{Mg}(\text{BH}_4)_2+8\text{KBH}_4 \rightarrow 10\text{Mg}_2\text{Si}+4\text{K}_2\text{B}_{12}\text{H}_{12}+72\text{H}_2$	2.532	37.3 (-2.9)	3.5	
	2^{id} step 25Si+60Mg(BH ₄) ₂ \rightarrow 25Mg ₂ Si+10MgB ₁₂ H ₁₂ +180H ₂	6.329	43.6		

	$\begin{array}{c} \text{Entire reaction} \\ 16\text{LiBH}_4 + 28.33\text{Si} + 60\text{Mg}(\text{BH}_4)_2 \rightarrow 28.33\text{Mg}_2\text{Si} + 8\text{Li}_2\text{B}_{12}\text{H}_{12} \\ + 3.33\text{MgB}_{12}\text{H}_{12} + 204\text{H}_2 \end{array}$	9.38		
5	$1^{\text{st}} \text{ step}$ $16\text{LiBH}_4+20\text{Si}+40\text{Mg}(\text{BH}_4)_2 \rightarrow 20\text{Mg}_2\text{Si}+8\text{Li}_2\text{B}_{12}\text{H}_{12}+144\text{H}_2$	6.622	39.2	4.5
	2^{nd} step 8.33Si+20Mg(BH ₄) ₂ \rightarrow 8.33Mg ₂ Si+3.33MgB ₁₂ H ₁₂ +60H ₂	2.759	43.62	
	Entire reaction $25MgH_2+NaMgH_3+13Mg(NH_2)_2 \rightarrow NaH+13Mg_3N_2+52H_2$	7.28		
6	1^{st} step 25MgH ₂ +12.5Mg(NH ₂) ₂ \rightarrow 12.5Mg ₃ N ₂ +50H ₂	6.996	26	5.3
	2^{nd} step NaMgH ₃ +0.5Mg(NH ₂) ₂ \rightarrow NaH+0.5Mg ₃ N ₂ +2H ₂	0.28	31.3	
	Entire reaction $4MgH_2+47Si+108Mg(BH_4)_2 \rightarrow 47Mg_2Si+18MgB_{12}H_{12}+328H_2$	9.11		
7	1^{st} step $4MgH_2+2Si \rightarrow 2Mg_2Si+4H_2$	0.111	37.6	6.1
	2^{nd} step 45Si+108Mg(BH ₄) ₂ \rightarrow 45Mg ₂ Si+18MgB ₁₂ H ₁₂ +324H ₂	9.002	43.6	
	$\begin{array}{c} \text{Entire reaction} \\ 2\text{LiBH}_4 + \text{MgH}_2 + 7\text{Mg}(\text{BH}_4)_2 + 3.83\text{Si} \rightarrow 3.83\text{Mg}_2\text{Si} + \text{Li}_2\text{B}_{12}\text{H}_{12} \\ + 0.33\text{MgB}_{12}\text{H}_{12} + 25\text{H}_2 \end{array}$	9.07		
8	$1^{\text{st}} \text{step}$ MgH ₂ +0.5Si $\rightarrow 0.5$ Mg ₂ Si+H ₂	0.363	37.6	6.1
	2^{nd} step 2LiBH ₄ +5Mg(BH ₄) ₂ +2.5Si \rightarrow 2.5Mg ₂ Si+Li ₂ B ₁₂ H ₁₂ +18H ₂	6.533	39.2	
	3^{rd} step 2Mg(BH ₄) ₂ +0.83Si \rightarrow 0.83Mg ₂ Si+0.33MgB ₁₂ H ₁₂ +6H ₂	2.178	43.6	
9	Entire reaction $MgH_2+6Mg(BH_4)_2+Ca(BH_4)_2+3.42Si \rightarrow 3.42Mg_2Si+0.17MgB_{12}H_{12}$ $+CaB_{12}H_{12}+22H_2$	8.6		6.1
-	$1^{\text{st}} \text{step}$ MgH ₂ +0.5Si $\rightarrow 0.5$ Mg ₂ Si+H ₂	0.391	37.6	

-	- nd	т		
	2^{ind} step $5\text{Mg}(BH_4)_2 + Ca(BH_4)_2 + 2.5\text{Si} \rightarrow 2.5\text{Mg}_2\text{Si} + CaB_{12}H_{12} + 18H_2$	7.033	41.2	
	3^{rd} step Mg(BH_4)_2+0.42Si $\rightarrow 0.42Mg_2Si+0.17MgB_{12}H_{12}+3H_2$	1.172	43.62	
10	$Entire reaction$ $46LiBH_4+10Mg(BH_4)_2+5Si \rightarrow 35LiH+5Mg_2Si+5.5Li_2B_{12}H_{12}+81.5H_2$	9.77		
	$1^{\text{st}} \text{ step}$ $4\text{LiBH}_{4}+10\text{Mg}(\text{BH}_{4})_{2}+5\text{Si} \rightarrow 5\text{Mg}_{2}\text{Si}+2\text{Li}_{2}\text{B}_{12}\text{H}_{12}+36\text{H}_{2}$	4.314	39.2	8
	2^{nd} step $42\text{LiBH}_4 \rightarrow 35\text{LiH} + 3.5\text{Li}_2\text{B}_{12}\text{H}_{12} + 45.5\text{H}_2$	5.452	47.2	•
	Entire reaction $12\text{LiBH}_4 + MgH_2 + Mg(BH_4)_2 + Si \rightarrow 9.67\text{LiH} + Mg_2Si + 1.17\text{Li}_2B_{12}H_{12} + 17.17H_2$	9.36		
11	$1^{\text{st}} \text{ step}$ MgH ₂ +0.5Si $\rightarrow 0.5$ Mg ₂ Si+H ₂	0.545	37.6	9.6
11	2^{nd} step 0.4LiBH ₄ +Mg(BH ₄) ₂ +0.5Si \rightarrow 0.5Mg ₂ Si+0.2Li ₂ B ₁₂ H ₁₂ +3.6H ₂	1.963	39.2	
	3^{rd} step 11.6LiBH ₄ \rightarrow 9.67LiH+0.97Li ₂ B ₁₂ H ₁₂ +12.57H ₂	6.851	47.16	
	Entire reaction $10\text{LiBH}_4+2\text{MgH}_2+\text{Si} \rightarrow 8.33\text{LiH}+\text{Mg}_2\text{Si}+0.83\text{Li}_2\text{B}_{12}\text{H}_{12}+12.83\text{H}_2$	8.67		
12	$1^{st} step 2MgH_2+Si \rightarrow Mg_2Si+2H_2$	1.35	37.6	9.6
	2^{nd} step 10LiBH ₄ \rightarrow 8.33LiH+0.83Li ₂ B ₁₂ H ₁₂ +10.83H ₂	7.315	47.2	
	Class II: (reactions having 10 kJ/mol H ₂ \leq (ΔG_{max} - ΔG_{max})	_{nin}) ≤ 20 k	(J/mol H ₂)	
	Entire reaction $33MgH_2+17Mg(NH_2)_2+2KMgH_3 \rightarrow 17Mg_3N_2+K_2MgH_4+68H_2$	7		
1	1^{st} step 33MgH ₂ +16.5Mg(NH ₂) ₂ \rightarrow 16.5Mg ₃ N ₂ +66H ₂	6.791	26	12.6
	2^{nd} step $0.5Mg(NH_2)_2+2KMgH_3 \rightarrow 0.5Mg_3N_2+K_2MgH_4+2H_2$	0.206	38.6	
2	Entire reaction $10MgH_2+NaMgH_3+6Mg(NH_2)_2+2KMgH_3 \rightarrow NaH+6Mg_3N_2+K_2MgH_4+24H_2$	6.17		12.6

$1^{st} step$ $10MgH_2+5Mg(NH_2)_2 \rightarrow 5Mg_3N_2+20H_2$	5.14	26	
2^{nd} step NaMgH ₃ +0.5Mg(NH ₂) ₂ \rightarrow NaH+0.5Mg ₃ N ₂ +2H ₂	0.514	31.3	
3^{rd} step $0.5Mg(NH_2)_2 + 2KMgH_3 \rightarrow 0.5Mg_3N_2 + K_2MgH_4 + 2H_2$	0.514	38.6	

Estimated reaction temperatures of metal hydride mixtures

We estimated the reaction temperatures of the 72 of the single-step reactions listed in Table S2 and every step associated with the 23 multi-step reactions in Tables 3 and S3 as described in Eq. (3) of the text. The reaction temperatures of MgH₂/Mg(NH₂)₂ and LiNH₂/LiH/KBH₄ mixtures for a H₂ pressure ofno 1 bar were taken from the van't Hoff plots in Figs. 2 and 3. Figures S1—S4 show the estimated temperature needed to generate a partial pressure of H₂ of 1 bar for each reaction (T_{est}) as a function of a H₂ capacity for the single-step reactions in each category listed in Table 2. Figures S5–S7 show the cumulative H₂ capacity of each reaction as a function of T_{est} for the multi-step reactions where the relevant steps are independent without any connection between the steps. Figures S5 and S6 show the reactions included in Class I of Table S3 and Fig. S7 shows the reactions included in Class II of Table S3.

Figure S1. The estimated temperature for generating a partial pressure of H_2 of 1 bar (T_{est}) as a function of H_2 capacity (wt.%) for the "interesting reactions" in Table 2.

Figure S2. The estimated temperature for generating a partial pressure of H_2 of 1 bar (T_{est}) as a function of H_2 capacity (wt.%) for thirteen reactions involving $B_{12}H_{12}$ species in Table 2.

Figure S3. The estimated temperature for generating a partial pressure of H_2 of 1 bar (T_{est}) as a function of H_2 capacity (wt.%) for the 39 reactions involving refractory materials in Table 2.

Figure S4. The estimated temperature for generating a partial pressure of H_2 of 1 bar (T_{est}) as a function of H_2 capacity (wt.%) for the nineteen reactions involving C in Table 2.

Figure S5. The cumulative H_2 capacity (wt.%) as a function of the estimated temperature for generating a partial pressure of H_2 of 1 bar (T_{est}) for the first six reactions in Class I of Table S3.

Figure S6. The cumulative H_2 capacity (wt.%) as a function of the estimated temperature for generating a partial pressure of H_2 of 1 bar (T_{est}) for the second six reactions in Class I of Table S3.

Figure S7. The cumulative H_2 capacity (wt.%) as a function of the estimated temperature for generating a partial pressure of H_2 of 1 bar (T_{est}) for the two reactions in Class II of Table S3.