Supplementary Information For

Large-scale screening of metal hydrides for hydrogen storage from firstprinciples calculations based on equilibrium reaction thermodynamics

Ki Chul Kim ${ }^{1}$, Anant D. Kulkarni ${ }^{2}$, J. Karl Johnson ${ }^{2}$, and David S. Sholl ${ }^{1 *}$
${ }^{1}$ School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA, 30332-0100, USA
${ }^{2}$ Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

DFT optimization of crystal structures

We updated our original database by including 147 new crystal compounds whose structures are currently available. The compounds are listed in Table S1 and the detailed structural information is shown in Table S2.

Table S1. List of 359 compounds included in our database.

One-element compounds				
Al	B	C	Ca	K
Li	Mg	Na	Sc	Si
Ti	V			
Two-element compounds				
AlB_{2}	AlB_{12}	$\mathrm{Al}_{4} \mathrm{C}_{3}$	$\mathrm{Al}_{2} \mathrm{Ca}$	$\mathrm{Al}_{4} \mathrm{Ca}$
AlH_{3}	AlLi	$\mathrm{Al}_{2} \mathrm{Li}_{3}$	$\mathrm{Al}_{3} \mathrm{Li}$	$\mathrm{Al}_{4} \mathrm{Li}_{9}$
$\mathrm{Al}_{12} \mathrm{Mg}_{17}$	$\mathrm{Al}_{14} \mathrm{Mg}_{13}$	$\mathrm{Al}_{30} \mathrm{Mg}_{23}$	AlN	AlSc
AlSc_{2}	$\mathrm{Al}_{2} \mathrm{Sc}$	$\mathrm{Al}_{3} \mathrm{Sc}$	AlTi	AlTi_{3}
$\mathrm{Al}_{2} \mathrm{Ti}$	$\mathrm{Al}_{3} \mathrm{Ti}$	AlV	AlV_{3}	$\mathrm{Al}_{3} \mathrm{~V}$
$\mathrm{Al}_{10} \mathrm{~V}$	$\mathrm{Al}_{23} \mathrm{~V}_{4}$	$\mathrm{Al}_{45} \mathrm{~V}_{7}$	$\mathrm{B}_{4} \mathrm{C}$	$\mathrm{B}_{13} \mathrm{C}_{2}$
$\mathrm{B}_{3} \mathrm{Ca}_{4} \mathrm{LiN}_{6}$	$\left(\mathrm{B}_{10} \mathrm{H}_{13}\right)_{2}$	BN	$\mathrm{B}_{13} \mathrm{~N}_{2}$	$\mathrm{C}_{2} \mathrm{Ca}$
$\mathrm{C}_{2} \mathrm{~N}_{2}$	$\mathrm{C}_{3} \mathrm{~N}_{4}$	$\mathrm{C}_{5} \mathrm{~N}_{4}$	$\mathrm{C}_{12} \mathrm{~N}_{6}$	CaB_{4}
CaB_{6}	CaH_{2}	CaLi_{2}	CaMg_{2}	CaN_{6}
$\mathrm{Ca}_{2} \mathrm{~N}$	$\mathrm{Ca}_{3} \mathrm{~N}_{2}$	$\mathrm{Ca}_{11} \mathrm{~N}_{8}$	CaSi	CaSi_{2}
$\mathrm{Ca}_{2} \mathrm{Si}$	$\mathrm{Ca}_{5} \mathrm{Si}_{3}$	KB_{6}	KC_{8}	$\mathrm{K}_{2} \mathrm{C}_{2}$
KH	KN_{3}	$\mathrm{K}_{3} \mathrm{~N}$	KSi	$\mathrm{K}_{4} \mathrm{Si}_{4}$
$\mathrm{K}_{8} \mathrm{Si}_{46}$	LiB	$\mathrm{Li}_{5} \mathrm{~B}_{4}$	$\mathrm{Li}_{2} \mathrm{C}_{2}$	LiH

[^0]| LiMg | LiN_{3} | $\mathrm{Li}_{3} \mathrm{~N}$ | LiSi | $\mathrm{Li}_{2} \mathrm{Si}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Li}_{7} \mathrm{Si}_{2}$ | $\mathrm{Li}_{12} \mathrm{Si}_{7}$ | $\mathrm{Li}_{13} \mathrm{Si}_{4}$ | $\mathrm{Li}_{15} \mathrm{Si}_{4}$ | MgB_{2} |
| MgB_{4} | MgB_{7} | MgC_{2} | $\mathrm{Mg}_{2} \mathrm{C}_{3}$ | MgH_{2} |
| $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ | MgSc | $\mathrm{Mg}_{2} \mathrm{Si}$ | $\mathrm{Mg}_{5} \mathrm{Si}_{6}$ | $\mathrm{N}_{4} \mathrm{Si}_{3}$ |
| NaB_{15} | $\mathrm{Na}_{3} \mathrm{~B}_{20}$ | $\mathrm{Na}_{2} \mathrm{C}_{2}$ | NaH | NaN_{3} |
| $\mathrm{Na}_{3} \mathrm{~N}$ | NaSi | $\mathrm{Na}_{4} \mathrm{Si}_{4}$ | $\mathrm{Na}_{8} \mathrm{Si}_{46}$ | ScB_{2} |
| ScB_{12} | ScC | $\mathrm{Sc}_{2} \mathrm{C}$ | $\mathrm{Sc}_{2} \mathrm{C}_{3}$ | $\mathrm{Sc}_{3} \mathrm{C}_{4}$ |
| $\mathrm{Sc}_{4} \mathrm{C}_{3}$ | $\mathrm{Sc}_{15} \mathrm{C}_{19}$ | ScH_{2} | ScN | ScSi |
| ScSi_{2} | $\mathrm{Sc}_{5} \mathrm{Si}_{3}$ | SiB_{3} | SiB_{6} | SiC |
| SiH | TiB | TiB_{2} | TiC | $\mathrm{Ti}_{2} \mathrm{C}$ |
| $\mathrm{Ti}_{8} \mathrm{C}_{5}$ | TiH | TiH_{2} | TiN | $\mathrm{Ti}_{2} \mathrm{~N}$ |
| TiSi | TiSi_{2} | $\mathrm{Ti}_{5} \mathrm{Si}_{3}$ | $\mathrm{Ti}_{5} \mathrm{Si}_{4}$ | TiV |
| VB | VB_{2} | $\mathrm{V}_{2} \mathrm{~B}_{3}$ | $\mathrm{V}_{3} \mathrm{~B}_{2}$ | VC |
| $\mathrm{V}_{2} \mathrm{C}$ | $\mathrm{V}_{6} \mathrm{C}_{5}$ | $\mathrm{V}_{8} \mathrm{C}_{7}$ | VH_{2} | $\mathrm{V}_{2} \mathrm{H}$ |
| VN | $\mathrm{V}_{2} \mathrm{~N}$ | VSi_{2} | $\mathrm{V}_{3} \mathrm{Si}$ | $\mathrm{V}_{5} \mathrm{Si}_{3}$ |
| $\mathrm{V}_{6} \mathrm{Si}_{5}$ | | | | |

$\mathrm{Al}\left(\mathrm{BH}_{4}\right)_{3}$	$\mathrm{Al}_{5} \mathrm{C}_{3} \mathrm{~N}$	$\mathrm{Al}_{6} \mathrm{C}_{3} \mathrm{~N}_{2}$	$\mathrm{Al}_{7} \mathrm{C}_{3} \mathrm{~N}_{3}$	$\mathrm{Al}_{8} \mathrm{C}_{3} \mathrm{~N}_{4}$
$\mathrm{Al}_{2} \mathrm{Ca}_{3} \mathrm{~N}_{4}$	$\mathrm{Al}_{2} \mathrm{CaSi}_{2}$	$\mathrm{Al}_{2} \mathrm{Ca}_{3} \mathrm{Si}_{2}$	$\mathrm{AlLi}_{3} \mathrm{~N}_{2}$	AlLiSi
$\mathrm{Al}_{3} \mathrm{Li}_{8} \mathrm{Si}_{5}$	$\mathrm{Al}_{3} \mathrm{Li}_{12} \mathrm{Si}_{4}$	$\mathrm{Al}_{2} \mathrm{MgC}_{2}$	$\mathrm{AlMg}_{4} \mathrm{Si}_{6}$	$\mathrm{Al}_{18} \mathrm{Mg}_{3} \mathrm{Ti}_{2}$
$\mathrm{AlSc}_{2} \mathrm{Si}_{2}$	$\mathrm{BC}_{2} \mathrm{~N}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{18} \mathrm{~N}_{18}$	$\mathrm{C}_{2} \mathrm{~N}_{2}(\mathrm{NH})$
CaAlH_{5}	$\mathrm{Ca}\left(\mathrm{AlH}_{4}\right)_{2}$	$\mathrm{Ca}_{4} \mathrm{Al}_{3} \mathrm{Mg}$	$\mathrm{Ca}_{3} \mathrm{AlN}_{3}$	CaAlSi
$\mathrm{CaB}_{2} \mathrm{C}_{2}$	$\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2}$	$\mathrm{CaB}_{12} \mathrm{H}_{12}$	$\mathrm{Ca}_{3} \mathrm{BN}_{3}$	CaCN_{2}
$\mathrm{CaC}_{4} \mathrm{~N}_{6}$	$\mathrm{Ca}_{2} \mathrm{HN}$	CaLiN	CaLiSi_{2}	$\mathrm{Ca}_{2} \mathrm{LiSi}_{3}$
$\mathrm{CaMg}_{2} \mathrm{~N}_{2}$	CaMgSi	$\mathrm{Ca}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$	$\mathrm{Ca}_{11} \mathrm{~N}_{6}\left(\mathrm{CN}_{2}\right)_{2}$	$\mathrm{Ca}_{2} \mathrm{~N}_{3} \mathrm{~V}$
$\mathrm{Ca}_{3} \mathrm{~N}_{3} \mathrm{~V}$	CaSiN_{2}	$\mathrm{Ca}_{2} \mathrm{Si}_{5} \mathrm{~N}_{8}$	$\mathrm{Ca}_{5}\left(\mathrm{Si}_{2} \mathrm{~N}_{6}\right)$	$\mathrm{Ca}_{4} \mathrm{TiN}_{4}$
$\mathrm{H}_{9} \mathrm{CN}_{9}$	KAlH_{4}	$\mathrm{K}_{3} \mathrm{AlH}_{6}$	KBH_{4}	$\mathrm{KB}_{21} \mathrm{H}_{18}$
$\mathrm{K}_{2} \mathrm{~B}_{6} \mathrm{H}_{6}$	$\mathrm{K}_{2}\left(\mathrm{~B}_{10} \mathrm{H}_{10}\right)$	$\mathrm{K}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}$	KCN	$\mathrm{KC}_{2} \mathrm{~N}_{3}$
$\mathrm{KC}_{4} \mathrm{~N}_{3}$	$\mathrm{K}_{2} \mathrm{CN}_{2}$	$\mathrm{K}_{3} \mathrm{C}_{6} \mathrm{~N}_{9}$	$\mathrm{K}_{3} \mathrm{LiSi}_{4}$	$\mathrm{K}_{7} \mathrm{LiSi}_{8}$
KMgH_{3}	$\mathrm{K}_{2} \mathrm{MgH}_{4}$	KNH_{2}	$\left(\mathrm{K}\left(\mathrm{NH}_{2}\right)\right)\left(\mathrm{NH}_{3}\right)_{2}$	KSiH_{3}
LiAlB_{14}	LiAlH_{4}	$\mathrm{Li}_{3} \mathrm{AlH}_{6}$	LiBC	$\mathrm{LiB}_{13} \mathrm{C}_{2}$
$\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{C}_{2}$	LiBH	$\mathrm{Li}\left(\mathrm{BH}_{2}\right)$	LiBH_{4}	$\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}$
$\mathrm{Li}_{3}\left(\mathrm{BH}_{6}\right)$	$\mathrm{Li}_{3} \mathrm{BN}_{2}$	$\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{Si}_{2}$	LiCN	$\mathrm{Li}_{2} \mathrm{CN}_{2}$
LiMgH_{3}	LiMgN	$\mathrm{Li}_{2} \mathrm{MgSi}$	$\mathrm{Li}_{12} \mathrm{Mg}_{3} \mathrm{Si}_{4}$	LiNH_{2}
$\mathrm{Li}_{2} \mathrm{NH}$	$\mathrm{Li}_{4} \mathrm{NH}$	$\mathrm{LiN}_{3} \mathrm{Si}_{2}$	$\mathrm{Li}_{5} \mathrm{~N}_{3} \mathrm{Si}$	$\mathrm{Li}_{7} \mathrm{~N}_{4} \mathrm{~V}$
$\mathrm{LiNa}_{2} \mathrm{~N}$	$\mathrm{LiNa}_{5} \mathrm{~N}_{2}$	$\mathrm{Li}_{2} \mathrm{Na}_{4} \mathrm{~N}_{2}$	$\mathrm{Li}_{2} \mathrm{NaN}$	$\mathrm{Li}_{3} \mathrm{Na}_{3} \mathrm{~N}_{2}$
$\mathrm{Li}_{4} \mathrm{Na}_{2} \mathrm{~N}_{2}$	$\mathrm{Li}_{5} \mathrm{NaN}_{2}$	$\mathrm{Li}_{3} \mathrm{NaSi}_{6}$	$\mathrm{Li}_{3} \mathrm{ScN}_{2}$	MgAlH_{5}
$\mathrm{Mg}\left(\mathrm{AlH}_{4}\right)_{2}$	MgAlSi	$\mathrm{MgAl}_{2} \mathrm{Si}_{2}$	$\mathrm{MgB}_{2} \mathrm{C}_{2}$	$\mathrm{MgB}_{12} \mathrm{C}_{2}$

$\mathrm{Mg}_{2} \mathrm{~B}_{24} \mathrm{C}$	$\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}$	$\mathrm{MgB}_{12} \mathrm{H}_{12}$	$\mathrm{MgB}_{9} \mathrm{~N}$	$\mathrm{Mg}_{3} \mathrm{BN}_{3}$
$\mathrm{MgB}_{12} \mathrm{Si}_{2}$	$\mathrm{MgC}_{4} \mathrm{~N}_{6}$	$\mathrm{Mg}(\mathrm{NCN})$	$\mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2}$	MgSiN_{2}
$\mathrm{Mg}_{7} \mathrm{TiH}_{16}$	$\mathrm{N}_{2} \mathrm{BH}_{7}$	$\mathrm{N}_{2} \mathrm{~B}_{10} \mathrm{H}_{18}$	$\mathrm{N}_{3} \mathrm{~B}_{3} \mathrm{H}_{6}$	$\mathrm{N}_{3} \mathrm{~B}_{3} \mathrm{H}_{12}$
$\mathrm{N}_{4} \mathrm{~B}_{9} \mathrm{H}_{11}$	$\mathrm{N}_{4} \mathrm{~B}_{10} \mathrm{H}_{8}$	$\mathrm{N}_{4} \mathrm{~B}_{10} \mathrm{H}_{22}$	$\mathrm{NH}_{3} \mathrm{BH}_{3}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~B}_{12} \mathrm{H}_{12}$
$\left(\mathrm{NH}_{2}\right) \mathrm{CN}$	$\mathrm{NH}_{4} \mathrm{HCN}_{2}$	$\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}$	NaAlH_{4}	$\mathrm{Na}_{3} \mathrm{AlH}_{6}$
$\mathrm{Na}_{5} \mathrm{Al}_{3} \mathrm{H}_{14}$	NaAlSi	NaAlSi_{4}	NaBH_{4}	$\mathrm{Na}_{2}\left(\mathrm{~B}_{10} \mathrm{H}_{10}\right)$
$\mathrm{Na}_{3}\left(\mathrm{BN}_{2}\right)$	NaCN	$\mathrm{NaC}_{4} \mathrm{~N}_{3}$	$\mathrm{Na}_{2} \mathrm{CN}_{2}$	$\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{~N}_{9}$
NaMgH_{3}	$\mathrm{NaN}_{3} \mathrm{C}_{2}$	NaNH_{2}	$\mathrm{ScAl}_{3} \mathrm{C}_{3}$	$\mathrm{Sc}_{2} \mathrm{AlC}$
$\mathrm{Sc}_{3} \mathrm{AlC}$	$\mathrm{ScB}_{2} \mathrm{C}$	$\mathrm{ScB}_{2} \mathrm{C}_{2}$	$\mathrm{Sc}_{2} \mathrm{BC}_{2}$	$\mathrm{Sc}_{2} \mathrm{~V}_{3} \mathrm{Si}_{4}$
SiCN	$\mathrm{SiC}_{2} \mathrm{~N}_{4}$	$\mathrm{Si}_{2} \mathrm{CN}_{4}$	$\mathrm{Ti}_{2} \mathrm{AlC}$	$\mathrm{Ti}_{3} \mathrm{AlC}$
$\mathrm{Ti}_{3} \mathrm{AlC}_{2}$	$\mathrm{Ti}_{2} \mathrm{AlN}$	$\mathrm{Ti}_{3} \mathrm{AlN}$	$\mathrm{Ti}_{4} \mathrm{AlN}_{3}$	$\mathrm{Ti}_{6} \mathrm{Si}_{2} \mathrm{~B}$
$\mathrm{Ti}_{3} \mathrm{SiC}_{2}$	$\mathrm{V}_{12} \mathrm{Al}_{3} \mathrm{C}_{8}$	$\mathrm{V}_{5} \mathrm{SiB}_{2}$		
Four-element compounds				
$\mathrm{AlNC}_{3} \mathrm{H}_{10}$	$\mathrm{BCH}_{5} \mathrm{~N}_{2}$	$\mathrm{B}_{10} \mathrm{C}_{6} \mathrm{H}_{30} \mathrm{~N}_{2}$	$\mathrm{B}_{20} \mathrm{C}_{3} \mathrm{H}_{30} \mathrm{~N}_{2}$	$\mathrm{BC}_{4} \mathrm{KN}_{4}$
$\mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{BH}_{3}$	$\mathrm{Ca}_{2} \mathrm{~N}_{2} \mathrm{BH}$	$\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{BH}_{3}\right)_{2}$	$\mathrm{KAl}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{K}_{5} \mathrm{C}_{2} \mathrm{HN}_{4}$
$\mathrm{KCaN}_{3} \mathrm{H}_{6}$	$\mathrm{K}\left(\mathrm{HCN}_{2}\right)$	$\mathrm{K}_{2} \mathrm{LiAlH}_{6}$	$\mathrm{KLi}_{3}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{KLi}_{7} \mathrm{~N}_{8} \mathrm{H}_{16}$
$\mathrm{K}_{2} \mathrm{Li}\left(\mathrm{NH}_{2}\right)_{3}$	$\mathrm{K}_{2} \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{K}_{2} \mathrm{NaAlH}_{6}$	$\mathrm{K}_{2} \mathrm{Na}\left(\mathrm{NH}_{2}\right)_{3}$	$\mathrm{K}_{3} \mathrm{Si}_{6} \mathrm{~N}_{11} \mathrm{H}_{6}$
LiAlMg ${ }_{10} \mathrm{H}_{24}$	$\mathrm{LiAl}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{Li}\left(\mathrm{B}(\mathrm{CN})_{4}\right)$	$\mathrm{Li}_{4} \mathrm{BN}_{3} \mathrm{H}_{10}$	$\mathrm{Li}_{2} \mathrm{Ca}(\mathrm{NH})_{2}$
$\mathrm{LiK}\left(\mathrm{BH}_{4}\right)_{2}$	$\mathrm{Li}_{2} \mathrm{Mg}(\mathrm{NH})_{2}$	$\mathrm{Li}\left(\mathrm{NH}_{2} \mathrm{BH}_{3}\right)$	$\left(\mathrm{Li}\left(\mathrm{NH}_{3}\right)_{4}\right)_{2}\left(\mathrm{~B}_{6} \mathrm{H}_{6}\right)\left(\mathrm{NH}_{3}\right)_{2}$	$\mathrm{LiNa}_{2} \mathrm{AlH}_{6}$
$\mathrm{LiNa}_{2}\left(\mathrm{NH}_{2}\right)_{3}$	$\mathrm{Li}_{3} \mathrm{Na}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{LiSc}\left(\mathrm{BH}_{4}\right)_{4}$	$\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}$	$\left(\mathrm{NH}_{4}\right) \mathrm{B}(\mathrm{CN})_{4}$
$\mathrm{NaAl}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{NaB}(\mathrm{CN})_{4}$	$\mathrm{NaN}_{2} \mathrm{CH}$	$\mathrm{Si}_{2} \mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{2}$	$\mathrm{VC}_{8} \mathrm{H}_{24} \mathrm{~N}_{4}$
Five-element compounds				
$\mathrm{LiAlC}_{4} \mathrm{H}_{16} \mathrm{~N}_{4}$	$\mathrm{LiSi}_{3} \mathrm{C}_{9} \mathrm{H}_{27} \mathrm{~N}_{2}$	$\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{C}_{12} \mathrm{H}_{37} \mathrm{~N}_{5}$		

Table S2. Comparison of the experimental and the DFT calculated structural parameters for the 147 compounds listed in Table 1, with all distances in \AA and angles in degrees.

Compound	Space group	Structural parameters (\AA, degree)	
		Experimental	Calculated
AlB_{12}	$\mathrm{P} 4{ }_{1} 2_{1} 2$	$\begin{aligned} & a=10.17 \\ & c=14.28 \end{aligned}$	$\begin{aligned} & a=11.41 \\ & c=13.86 \end{aligned}$
$\mathrm{Al}_{4} \mathrm{C}_{3}$	R-3mH	$\begin{gathered} a=3.335 \\ c=24.967 \\ \gamma=120.0 \end{gathered}$	$\begin{gathered} a=3.349 \\ c=25.109 \\ \gamma=120.0 \end{gathered}$
$\mathrm{Al}_{4} \mathrm{Ca}$	I4/mmm	$\begin{aligned} & a=4.354 \\ & c=11.18 \end{aligned}$	$\begin{aligned} & a=4.368 \\ & c=11.19 \end{aligned}$
$\mathrm{Al}_{14} \mathrm{Mg}_{13}$	Im-3m	$a=10.44$	$a=10.2$
$\mathrm{Al}_{30} \mathrm{Mg}_{23}$	R-3H	$a=12.825$	$a=12.787$
$\mathrm{Al}_{23} \mathrm{~V}_{4}$	P63/mmc	$\begin{gathered} \hline a=7.693 \\ c=17.04 \\ \gamma=120 \end{gathered}$	$\begin{gathered} \hline a=7.681 \\ c=17.04 \\ \gamma=120 \end{gathered}$
$\mathrm{Al}_{45} \mathrm{~V}_{7}$	C2/m	$\begin{gathered} a=25.604 \\ b=7.621 \\ c=11.081 \\ \beta=128.92 \end{gathered}$	$\begin{gathered} a=25.655 \\ b=7.608 \\ c=11.086 \\ \beta=128.88 \end{gathered}$
$\mathrm{B}_{4} \mathrm{C}$	R-3mH	$\begin{gathered} a=5.60 \\ c=12.12 \\ \gamma=120 \end{gathered}$	$\begin{aligned} & \hline a=7.40 \\ & c=8.77 \\ & \gamma=120 \end{aligned}$
$\mathrm{B}_{13} \mathrm{C}_{2}$	R-3mH	$\begin{gathered} a=5.633 \\ c=12.164 \\ \gamma=120 \end{gathered}$	$\begin{gathered} a=5.656 \\ c=12.12 \\ \gamma=120 \end{gathered}$
$\left(\mathrm{B}_{10} \mathrm{H}_{13}\right)_{2}$	Pbca	$\begin{aligned} & a=10.66 \\ & b=10.55 \\ & c=14.56 \end{aligned}$	$\begin{aligned} & a=10.83 \\ & b=10.69 \\ & c=14.78 \end{aligned}$
$\mathrm{B}_{13} \mathrm{~N}_{2}$	R-3m	$\begin{gathered} a=5.45 \\ c=12.26 \end{gathered}$	$\begin{gathered} a=5.49 \\ c=12.41 \end{gathered}$
$\mathrm{C}_{2} \mathrm{Ca}$	C2/m	$\begin{gathered} a=7.208 \\ b=3.828 \\ c=7.368 \\ \beta=107.193 \end{gathered}$	$\begin{gathered} a=7.170 \\ b=3.833 \\ c=7.416 \\ \beta=106.961 \end{gathered}$
$\mathrm{C}_{2} \mathrm{~N}_{2}$	Pcab	$\begin{aligned} & \hline a=6.31 \\ & b=7.08 \\ & c=6.19 \end{aligned}$	$\begin{aligned} & a=6.72 \\ & b=6.38 \\ & c=6.06 \end{aligned}$

$\mathrm{C}_{3} \mathrm{~N}_{4}$	P-6m2	$\begin{gathered} \hline a=4.742 \\ c=6.720 \\ \gamma=120 \end{gathered}$	$\begin{gathered} \hline a=4.766 \\ c=6.400 \\ \gamma=120 \end{gathered}$
$\mathrm{C}_{5} \mathrm{~N}_{4}$	R3cH	$\begin{gathered} a=9.062 \\ c=11.625 \\ \gamma=120 \end{gathered}$	$\begin{gathered} a=8.912 \\ c=11.416 \\ \gamma=120 \end{gathered}$
$\mathrm{C}_{12} \mathrm{~N}_{6}$	Pa-3	$a=10.781$	$a=10.746$
CaB_{4}	P4/mbm	$\begin{aligned} & a=7.10 \\ & c=4.14 \end{aligned}$	$\begin{gathered} a=7.17 \\ c=4.1 \end{gathered}$
$\mathrm{Ca}_{2} \mathrm{Si}$	Pnma	$\begin{aligned} & a=7.69 \\ & b=4.82 \\ & c=9.05 \end{aligned}$	$\begin{aligned} & a=7.65 \\ & b=4.83 \\ & c=9.09 \end{aligned}$
KC_{8}	Fddds	$\begin{aligned} a & =4.92 \\ b & =8.51 \\ c & =21.40 \end{aligned}$	$\begin{gathered} a=4.97 \\ b=8.61 \\ c=21.37 \end{gathered}$
KSi	P-43n	$a=12.62$	$a=12.72$
$\mathrm{K}_{8} \mathrm{Si}_{46}$	Pm-3n	$a=10.30$	$a=10.36$
LiB	PNMA	$\begin{gathered} a=6.40 \\ b=3.00 \\ c=5.6 \end{gathered}$	$\begin{aligned} & a=6.225 \\ & b=3.073 \\ & c=5.589 \end{aligned}$
LiMg	Im-3m	$a=3.484$	$a=3.434$
$\mathrm{Li}_{12} \mathrm{Si}_{7}$	Pnma	$\begin{gathered} a=8.6 \\ b=19.755 \\ c=14.336 \end{gathered}$	$\begin{gathered} a=8.54 \\ b=19.631 \\ c=14.32 \end{gathered}$
$\mathrm{Li}_{13} \mathrm{Si}_{4}$	Pbam	$\begin{gathered} a=7.99 \\ b=15.21 \\ c=4.43 \end{gathered}$	$\begin{gathered} a=7.902 \\ b=15.022 \\ c=4.432 \end{gathered}$
$\mathrm{Li}_{15} \mathrm{Si}_{4}$	I-43d	$a=10.69$	$a=10.6$
NaB_{15}	Imam	$\begin{gathered} a=5.847 \\ b=8.415 \\ c=10.298 \end{gathered}$	$\begin{gathered} a=5.848 \\ b=8.426 \\ c=10.295 \end{gathered}$
$\mathrm{Na}_{3} \mathrm{~B}_{20}$	Cmmm	$\begin{gathered} a=18.695 \\ b=5.701 \\ c=4.151 \end{gathered}$	$\begin{gathered} a=18.636 \\ b=5.693 \\ c=4.158 \end{gathered}$
$\mathrm{Na}_{4} \mathrm{Si}_{4}$	C2/c	$\begin{gathered} a=12.153 \\ b=6.545 \\ c=11.132 \\ \beta=118.9 \end{gathered}$	$\begin{gathered} a=12.151 \\ b=6.563 \\ c=11.109 \\ \beta=90.0 \end{gathered}$

$\mathrm{Na}_{8} \mathrm{Si}_{46}$	Pm-3n	$a=10.19$	$a=12.31$
$\mathrm{Sc}_{15} \mathrm{C}_{19}$	$\mathrm{P}-42_{1} \mathrm{C}$	$\begin{gathered} a=7.5 \\ c=15.0 \end{gathered}$	$\begin{gathered} a=7.51 \\ c=14.612 \end{gathered}$
SiB_{3}	Imma	$\begin{gathered} a=8.392 \\ b=12.568 \\ c=6.213 \end{gathered}$	$\begin{gathered} a=8.381 \\ b=12.588 \\ c=6.223 \end{gathered}$
SiC	F-43m	$a=4.36$	$a=4.38$
TiV	Im-3m	$a=3.159$	$a=3.103$
$\mathrm{V}_{2} \mathrm{~N}$	P-31m	$\begin{aligned} a & =4.917 \\ c & =4.568 \\ \gamma & =120.0 \end{aligned}$	$\begin{aligned} & a=4.899 \\ & c=4.522 \\ & \gamma=120.0 \end{aligned}$
$\mathrm{V}_{5} \mathrm{Si}_{3}$	I4/mcm	$\begin{aligned} & a=9.429 \\ & c=4.756 \end{aligned}$	$\begin{aligned} & a=9.393 \\ & c=4.715 \end{aligned}$
$\mathrm{Al}\left(\mathrm{BH}_{4}\right)_{3}$	Pna2 ${ }_{1}$	$\begin{gathered} a=18.02 \\ b=6.14 \\ c=6.20 \end{gathered}$	$\begin{gathered} a=17.99 \\ b=6.12 \\ c=6.20 \end{gathered}$
$\mathrm{Al}_{2} \mathrm{MgC}_{2}$	P-3m	$\begin{aligned} & a=3.377 \\ & c=5.817 \\ & \gamma=120.0 \end{aligned}$	$\begin{gathered} a=3.385 \\ c=5.82 \\ \gamma=120.0 \end{gathered}$
$\mathrm{Al}_{18} \mathrm{Mg}_{3} \mathrm{Ti}_{2}$	Fd-3ms	$a=14.788$	$a=14.775$
$\mathrm{BC}_{2} \mathrm{~N}$	Pmm2	$\begin{aligned} & a=2.528 \\ & b=2.502 \\ & c=3.587 \end{aligned}$	$\begin{gathered} a=2.56 \\ b=2.533 \\ c=3.637 \end{gathered}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{4}$	P21/c	$\begin{gathered} a=3.791 \\ b=12.412 \\ c=9.113 \\ \beta=91.49 \end{gathered}$	$\begin{gathered} a=3.651 \\ b=12.012 \\ c=9.189 \\ \beta=91.32 \end{gathered}$
$\mathrm{C}_{2} \mathrm{H}_{18} \mathrm{~N}_{18}$	P-1	$\begin{gathered} a=4.621 \\ b=8.585 \\ c=9.271 \\ \alpha=108.49 \\ \beta=95.29 \\ \gamma=102.99 \end{gathered}$	$\begin{gathered} a=4.501 \\ b=8.415 \\ c=9.174 \\ \alpha=109.353 \\ \beta=95.17 \\ \gamma=103.09 \end{gathered}$
$\mathrm{C}_{2} \mathrm{~N}_{2}(\mathrm{NH})$	Cmc_{1}	$\begin{gathered} a=7.57 \\ b=4.44 \\ c=4.0 \end{gathered}$	$\begin{aligned} & a=7.63 \\ & b=4.48 \\ & c=4.04 \end{aligned}$
$\mathrm{Ca}_{4} \mathrm{Al}_{3} \mathrm{Mg}$	Pbcm	$\begin{gathered} a=6.179 \\ b=24.211 \end{gathered}$	$\begin{gathered} a=6.191 \\ b=24.248 \end{gathered}$

		$c=5.886$	$c=5.905$
CaAlSi	P-6m2	$\begin{aligned} & a=4.2 \\ & c=4.4 \end{aligned}$	$\begin{aligned} & a=4.21 \\ & c=4.41 \end{aligned}$
$\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2}$	F2dd	$\begin{gathered} a=8.78 \\ b=13.02 \\ c=7.41 \end{gathered}$	$\begin{gathered} a=8.75 \\ b=12.94 \\ c=7.37 \end{gathered}$
$\mathrm{CaB}_{12} \mathrm{H}_{12}$	C2/c	$\begin{gathered} a=14.328 \\ b=7.164 \\ c=11.017 \\ \alpha=\beta=89.84 \\ \gamma=122.07 \end{gathered}$	$\begin{gathered} a=14.307 \\ b=7.152 \\ c=11.001 \\ \alpha=\beta=89.85 \\ \gamma=122.07 \end{gathered}$
$\mathrm{CaC} \mathrm{N}_{6}$	C2/c	$\begin{gathered} a=12.446 \\ b=6.08 \\ c=7.898 \\ \beta=145.2 \end{gathered}$	$\begin{gathered} a=12.855 \\ b=6.261 \\ c=7.674 \\ \beta=149.86 \end{gathered}$
$\mathrm{Ca}_{4} \mathrm{~N}_{2}\left(\mathrm{CN}_{2}\right)$	Pnma	$\begin{gathered} a=11.44 \\ b=3.58 \\ c=13.84 \end{gathered}$	$\begin{gathered} a=11.51 \\ b=3.58 \\ c=13.92 \end{gathered}$
$\mathrm{Ca}_{11} \mathrm{~N}_{6}\left(\mathrm{CN}_{2}\right)_{2}$	P42/MNM	$\begin{gathered} a=14.523 \\ c=3.608 \end{gathered}$	$\begin{aligned} & a=14.551 \\ & c=3.6221 \end{aligned}$
CaSiN_{2}	Pbca	$\begin{gathered} a=5.123 \\ b=10.207 \\ c=14.823 \end{gathered}$	$\begin{gathered} a=5.163 \\ b=10.279 \\ c=14.933 \end{gathered}$
$\mathrm{Ca}_{2} \mathrm{Si}_{5} \mathrm{~N}_{8}$	Pbca	$\begin{gathered} a=10.584 \\ b=9.652 \\ c=13.663 \end{gathered}$	$\begin{gathered} a=10.616 \\ b=9.675 \\ c=13.669 \end{gathered}$
$\mathrm{Ca}_{5}\left(\mathrm{Si}_{2} \mathrm{~N}_{6}\right)$	C12/C1	$\begin{aligned} a & =9.836 \\ b & =6.0519 \\ c & =12.757 \\ \beta & =100.20 \end{aligned}$	$\begin{gathered} a=9.899 \\ b=6.094 \\ c=14.736 \\ \beta=121.155 \end{gathered}$
$\mathrm{Ca}_{4} \mathrm{TiN}_{4}$	P-1	$\begin{aligned} \hline a & =5.98 \\ b & =6.01 \\ c & =8.99 \\ \alpha & =71.57 \\ \beta & =79.47 \\ \gamma & =68.26 \end{aligned}$	$\begin{aligned} \alpha & =6.01 \\ b & =6.04 \\ c & =9.02 \\ \alpha & =71.62 \\ \beta & =79.32 \\ \gamma & =68.07 \end{aligned}$
$\mathrm{H}_{9} \mathrm{CN}_{9}$	P2 ${ }_{1} / \mathrm{c}$	$\begin{aligned} & a=6.679 \\ & b=7.722 \end{aligned}$	$\begin{aligned} & a=6.555 \\ & b=7.546 \end{aligned}$

		$\begin{gathered} c=13.143 \\ \beta=95.44 \end{gathered}$	$\begin{gathered} c=12.901 \\ \beta=95.71 \end{gathered}$
KBH_{4}	Fm-3m	$a=6.71$	$a=6.69$
KBH_{4}	$\mathrm{P}_{2} / \mathrm{nmc}$	$\begin{aligned} & a=4.68 \\ & c=6.57 \end{aligned}$	$\begin{aligned} & a=4.71 \\ & c=6.61 \end{aligned}$
$\mathrm{KB}_{21} \mathrm{H}_{18}$	C2	$\begin{gathered} \hline a=12.49 \\ b=7.11 \\ c=16.94 \\ \beta=93.81 \end{gathered}$	$\begin{gathered} \hline a=12.71 \\ b=7.22 \\ c=17.04 \\ \beta=94.1 \end{gathered}$
$\mathrm{K}_{2} \mathrm{~B}_{6} \mathrm{H}_{6}$	Fm-3m	$a=8.839$	$a=8.897$
$\mathrm{K}_{2}\left(\mathrm{~B}_{10} \mathrm{H}_{10}\right)$	P121/n1	$\begin{aligned} a & =12.855 \\ b & =11.178 \\ c & =6.823 \\ \beta & =93.357 \end{aligned}$	$\begin{gathered} a=11.993 \\ b=9.748 \\ c=9.028 \\ \beta=91.93 \end{gathered}$
$\mathrm{K}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}$	Fm-3	$a=10.629$	$a=10.639$
$\mathrm{KC}_{4} \mathrm{~N}_{3}$	P-1	$\begin{gathered} a=8.665 \\ b=8.873 \\ c=3.89 \\ \alpha=86.7 \\ \beta=90.1 \\ \gamma=105 \end{gathered}$	$\begin{gathered} a=8.827 \\ b=9.296 \\ c=4.009 \\ \alpha=83.8 \\ \beta=90.9 \\ \gamma=104.3 \end{gathered}$
KNH_{2}	$\mathrm{P} 21 / \mathrm{m}$	$\begin{gathered} a=4.586 \\ b=3.904 \\ c=6.223 \\ \beta=95.8 \end{gathered}$	$\begin{gathered} a=4.458 \\ b=3.745 \\ c=6.111 \\ \beta=94.958 \end{gathered}$
$\left(\mathrm{K}\left(\mathrm{NH}_{2}\right)\right)\left(\mathrm{NH}_{3}\right)_{2}$	C222 ${ }_{1}$	$\begin{aligned} & a=6.839 \\ & b=9.953 \\ & c=6.590 \end{aligned}$	$\begin{gathered} a=6.834 \\ b=9.681 \\ c=6.5711 \end{gathered}$
LiAlB_{14}	Imam	$\begin{gathered} a=5.847 \\ b=8.143 \\ c=10.354 \end{gathered}$	$\begin{gathered} a=5.852 \\ b=8.142 \\ c=10.353 \end{gathered}$
$\mathrm{LiB}_{13} \mathrm{C}_{2}$	Imma	$\begin{gathered} a=5.668 \\ b=10.820 \\ c=8.040 \end{gathered}$	$\begin{aligned} & a=5.842 \\ & b=9.661 \\ & c=8.923 \end{aligned}$
$\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{C}_{2}$	AMM2	$\begin{gathered} a=4.706 \\ b=5.318 \\ c=5.318 \\ \alpha=115.798 \end{gathered}$	$\begin{aligned} a & =4.663 \\ b & =5.553 \\ c & =5.553 \\ \alpha & =100.47 \end{aligned}$

LiBH	PNMA	$\begin{aligned} & \hline a=6.2 \\ & b=3.0 \\ & c=6.3 \end{aligned}$	$\begin{aligned} & a=5.646 \\ & b=3.076 \\ & c=6.505 \end{aligned}$
$\mathrm{Li}\left(\mathrm{BH}_{2}\right)$	PNMA	$\begin{aligned} & a=8.1 \\ & b=3.0 \\ & c=5.9 \end{aligned}$	$\begin{aligned} & a=8.322 \\ & b=3.037 \\ & c=5.485 \end{aligned}$
$\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}$	Pa3	$a=9.577$	$a=9.580$
$\mathrm{Li}_{3}\left(\mathrm{BH}_{6}\right)$	R3-H	$\begin{gathered} a=5.182 \\ \alpha=\beta=\gamma=91.11 \end{gathered}$	$\begin{gathered} a=5.356 \\ \alpha=\beta=\gamma=94.16 \end{gathered}$
$\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{Si}_{2}$	Cmce	$\begin{gathered} a=6.106 \\ b=10.979 \\ c=8.405 \end{gathered}$	$\begin{gathered} a=6.118 \\ b=11.012 \\ c=8.43 \end{gathered}$
LiMgH_{3}	R3c	$\begin{gathered} a=4.96 \\ c=13.34 \end{gathered}$	$\begin{gathered} a=4.94 \\ c=13.24 \end{gathered}$
$\mathrm{Li}_{2} \mathrm{MgSi}$	Fm-3m	$a=12.83$	$a=12.748$
$\mathrm{LiN}_{3} \mathrm{Si}_{2}$	Cmc_{2}	$\begin{gathered} a=9.222 \\ b=5.296 \\ c=4.78 \end{gathered}$	$\begin{aligned} & a=9.277 \\ & b=5.329 \\ & c=4.812 \end{aligned}$
$\mathrm{LiNa}_{2} \mathrm{~N}$	P6/mmm	$\begin{gathered} a=4 \\ c=4.2 \\ \gamma=120 \end{gathered}$	$\begin{gathered} a=4.37 \\ c=3.838 \\ \gamma=120 \end{gathered}$
$\mathrm{LiNa}_{5} \mathrm{~N}_{2}$	C_{2}	$\begin{aligned} & a=6.731 \\ & b=5.944 \\ & c=6.383 \\ & \beta=91.18 \end{aligned}$	$\begin{aligned} & a=6.735 \\ & b=5.949 \\ & c=6.389 \\ & \beta=91.15 \end{aligned}$
$\mathrm{Li}_{2} \mathrm{Na}_{4} \mathrm{~N}_{2}$	P4/nmm	$\begin{aligned} & a=3.895 \\ & c=6.114 \end{aligned}$	$\begin{aligned} & a=4.066 \\ & c=6.099 \end{aligned}$
$\mathrm{Li}_{2} \mathrm{NaN}$	P6/nmm	$\begin{gathered} a=3.65 \\ c=4.6 \\ \gamma=120 \end{gathered}$	$\begin{gathered} a=3.62 \\ c=4.716 \\ \gamma=120 \end{gathered}$
$\mathrm{Li}_{3} \mathrm{Na}_{3} \mathrm{~N}_{2}$	Pm	$\begin{gathered} a=3.854 \\ b=3.676 \\ c=6.32 \\ \beta=90.31 \end{gathered}$	$\begin{aligned} & a=3.853 \\ & b=4.208 \\ & c=7.272 \\ & \beta=89.85 \end{aligned}$
$\mathrm{Li}_{4} \mathrm{Na}_{2} \mathrm{~N}_{2}$	Fm-3m	$a=5.265$	$a=5.404$
$\mathrm{Li}_{5} \mathrm{NaN}_{2}$	P4/mmm	$\begin{aligned} & a=3.965 \\ & c=5.504 \end{aligned}$	$\begin{aligned} & a=3.705 \\ & c=5.186 \end{aligned}$
$\mathrm{Li}_{3} \mathrm{NaSi}_{6}$	Pnma	$a=17.972$	$a=18.021$

		$\begin{gathered} b=3.788 \\ c=10.299 \end{gathered}$	$\begin{gathered} \hline b=3.804 \\ c=10.331 \end{gathered}$
$\mathrm{MgAl}_{2} \mathrm{Si}_{2}$	P-3m1	$\begin{aligned} & a=4.05 \\ & c=6.74 \end{aligned}$	$\begin{aligned} & a=4.08 \\ & c=6.69 \end{aligned}$
$\mathrm{MgB}_{12} \mathrm{C}_{2}$	C2/c	$\begin{gathered} a=7.27 \\ b=8.78 \\ c=7.28 \\ \beta=105.33 \end{gathered}$	$\begin{gathered} a=7.26 \\ b=8.77 \\ c=7.25 \\ \beta=105.32 \end{gathered}$
$\mathrm{Mg}_{2} \mathrm{~B}_{24} \mathrm{C}$	P-4n2	$\begin{aligned} & a=8.94 \\ & c=5.07 \end{aligned}$	$\begin{aligned} & a=8.96 \\ & c=5.09 \end{aligned}$
$\mathrm{MgB}_{12} \mathrm{H}_{12}$	C2/m	$\begin{gathered} a=11.689 \\ b=8.712 \\ c=6.907 \\ \beta=122.47 \end{gathered}$	$\begin{gathered} \hline a=11.687 \\ b=8.711 \\ c=6.905 \\ \beta=122.5 \end{gathered}$
$\mathrm{MgB}_{12} \mathrm{Si}_{2}$	Pnma	$\begin{gathered} a=10.98 \\ b=6.11 \\ c=8.36 \end{gathered}$	$\begin{gathered} a=11.03 \\ b=6.13 \\ c=8.39 \end{gathered}$
$\mathrm{MgC}_{4} \mathrm{~N}_{6}$	Pnnm	$\begin{gathered} \hline a=6.171 \\ b=7.17 \\ c=7.404 \end{gathered}$	$\begin{aligned} & a=6.443 \\ & b=7.289 \\ & c=7.429 \end{aligned}$
$\mathrm{Mg}_{7} \mathrm{TiH}_{16}$	Fm3m	$a=9.564$	$a=9.341$
$\mathrm{N}_{2} \mathrm{BH}_{7}$	Pben	$\begin{gathered} \hline a=9.53 \\ b=5.12 \\ c=13.01 \end{gathered}$	$\begin{gathered} a=9.768 \\ b=5.237 \\ c=12.672 \end{gathered}$
$\mathrm{N}_{2} \mathrm{~B}_{10} \mathrm{H}_{18}$	Pnma	$\begin{gathered} a=18.096 \\ b=7.373 \\ c=7.223 \end{gathered}$	$\begin{gathered} a=18.237 \\ b=7.528 \\ c=7.284 \end{gathered}$
$\mathrm{N}_{3} \mathrm{~B}_{3} \mathrm{H}_{6}$	$\mathrm{P} 432{ }_{1} 2$	$\begin{gathered} a=5.428 \\ c=16.279 \end{gathered}$	$\begin{gathered} a=5.63 \\ c=17.223 \end{gathered}$
$\mathrm{N}_{3} \mathrm{~B}_{3} \mathrm{H}_{12}$	Pbcm	$\begin{gathered} a=4.403 \\ b=12.21 \\ c=11.227 \end{gathered}$	$\begin{gathered} a=4.442 \\ b=12.382 \\ c=11.272 \end{gathered}$
$\mathrm{N}_{4} \mathrm{~B}_{9} \mathrm{H}_{11}$	$\mathrm{P} 21 / \mathrm{c}$	$\begin{gathered} a=8.318 \\ b=5.951 \\ c=19.265 \\ \beta=95.3 \end{gathered}$	$\begin{gathered} a=8.611 \\ b=6.263 \\ c=20.044 \\ \beta=94.6 \end{gathered}$
$\mathrm{N}_{4} \mathrm{~B}_{10} \mathrm{H}_{8}$	C2/c	$\begin{gathered} a=11.411 \\ b=6.658 \end{gathered}$	$\begin{gathered} a=11.945 \\ b=7.373 \end{gathered}$

		$c=13.058$	$\begin{gathered} c=15.268 \\ \alpha=91.09 \end{gathered}$
$\mathrm{N}_{4} \mathrm{~B}_{10} \mathrm{H}_{22}$	C2/c	$\begin{gathered} a=7.7 \\ b=7.7 \\ c=9.772 \\ \alpha=83.872 \\ \beta=83.872 \\ \gamma=82.307 \end{gathered}$	$\begin{gathered} a=7.813 \\ b=7.229 \\ c=9.473 \\ \alpha=77.29 \\ \beta=76.99 \\ \gamma=82.3 \end{gathered}$
$\mathrm{NH}_{3} \mathrm{BH}_{3}$	Pmn21	$\begin{aligned} & a=5.395 \\ & b=4.887 \\ & c=4.986 \end{aligned}$	$\begin{aligned} & a=5.356 \\ & b=4.796 \\ & c=4.921 \end{aligned}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~B}_{12} \mathrm{H}_{12}$	Fm-3	$a=10.88$	$a=10.79$
$\left(\mathrm{NH}_{2}\right) \mathrm{CN}$	Pbca	$\begin{aligned} & a=6.856 \\ & b=6.628 \\ & c=9.147 \end{aligned}$	$\begin{aligned} & a=6.726 \\ & b=6.597 \\ & c=8.916 \end{aligned}$
$\mathrm{NH}_{4} \mathrm{HCN}_{2}$	$\mathrm{P} 2{ }_{1} 2_{1} 2$	$a=6.44$ $b=6.58$ $c=7.4$	$\begin{gathered} a=6.38 \\ b=6.5 \\ c=7.3 \end{gathered}$
$\mathrm{Na}_{5} \mathrm{Al}_{3} \mathrm{H}_{14}$	P4/mnc	$\begin{gathered} a=6.769 \\ c=10.289 \end{gathered}$	$\begin{gathered} a=6.7 \\ c=10.2 \end{gathered}$
NaBH_{4}	Fm-3m	$a=6.15$	$a=6.02$
NaBH_{4}	$\mathrm{P}-42{ }_{1} \mathrm{C}$	$\begin{aligned} & a=4.35 \\ & c=5.86 \end{aligned}$	$\begin{aligned} & a=4.31 \\ & c=5.82 \end{aligned}$
$\mathrm{Na}_{2}\left(\mathrm{~B}_{10} \mathrm{H}_{10}\right)$	P121/n1	$\begin{gathered} a=10.283 \\ b=13.022 \\ c=6.673 \\ \beta=93.754 \end{gathered}$	$\begin{gathered} a=9.846 \\ b=12.153 \\ c=8.104 \\ \beta=93.074 \end{gathered}$
$\mathrm{Na}_{3}\left(\mathrm{BN}_{2}\right)$	P2 ${ }_{1} / \mathrm{c}$	$\begin{aligned} a & =5.717 \\ b & =7.931 \\ c & =7.883 \\ \beta & =111.32 \end{aligned}$	$\begin{gathered} a=5.737 \\ b=7.966 \\ c=7.9 \\ \beta=111.29 \end{gathered}$
$\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{~N}_{9}$	$\mathrm{P} 2{ }_{1} / \mathrm{c}$	$\begin{aligned} a & =11.048 \\ b & =23.381 \\ c & =3.516 \\ \beta & =97.913 \end{aligned}$	$\begin{gathered} a=11.397 \\ b=24.101 \\ c=3.937 \\ \beta=97.913 \end{gathered}$
$\mathrm{Sc}_{2} \mathrm{AlC}$	P63/MMC	$\begin{gathered} a=3.228 \\ c=14.873 \\ \gamma=120.0 \end{gathered}$	$\begin{gathered} a=3.285 \\ c=15.043 \\ \gamma=120.0 \end{gathered}$

Ti2 ${ }_{2} \mathrm{AlC}$	$\mathrm{P}_{3} / \mathrm{mmc}$	$\begin{gathered} a=2.97 \\ c=13.22 \end{gathered}$	$\begin{gathered} a=3.07 \\ c=13.71 \end{gathered}$
$\mathrm{Ti}_{6} \mathrm{Si}_{2} \mathrm{~B}$	P-62m	$\begin{gathered} a=6.802 \\ c=3.338 \\ \gamma=120 \end{gathered}$	$\begin{gathered} a=6.777 \\ c=3.312 \\ \gamma=120 \end{gathered}$
$\mathrm{V}_{12} \mathrm{Al}_{3} \mathrm{C}_{8}$	P63/MCM	$\begin{gathered} a=5.088 \\ c=22.983 \\ \gamma=120 \end{gathered}$	$\begin{gathered} a=5.065 \\ c=22.638 \\ \gamma=120 \end{gathered}$
$\mathrm{V}_{5} \mathrm{SiB}_{2}$	I4/mcm	$\begin{gathered} a=5.81 \\ c=10.79 \end{gathered}$	$\begin{gathered} a=5.774 \\ c=10.762 \end{gathered}$
$\mathrm{AlNC}_{3} \mathrm{H}_{10}$	P2 ${ }_{1} / \mathrm{c}$	$\begin{aligned} a & =5.428 \\ b & =9.908 \\ c & =9.963 \\ \beta & =99.254 \end{aligned}$	$\begin{gathered} a=5.379 \\ b=11.302 \\ c=10.271 \\ \beta=99.2 \end{gathered}$
$\mathrm{BCH}_{5} \mathrm{~N}_{2}$	Pna2 ${ }_{1}$	$\begin{aligned} & a=7.973 \\ & b=6.445 \\ & c=6.976 \end{aligned}$	$\begin{aligned} & a=7.986 \\ & b=6.515 \\ & c=7.103 \end{aligned}$
$\mathrm{B}_{10} \mathrm{C}_{6} \mathrm{H}_{30} \mathrm{~N}_{2}$	P2 ${ }_{1} / \mathrm{c}$	$\begin{gathered} a=8.369 \\ b=16.663 \\ c=11.989 \\ \beta=100.34 \end{gathered}$	$\begin{gathered} a=8.586 \\ b=17.002 \\ c=12.249 \\ \beta=100.67 \end{gathered}$
$\mathrm{B}_{20} \mathrm{C}_{3} \mathrm{H}_{30} \mathrm{~N}_{2}$	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	$\begin{aligned} & a=10.334 \\ & b=10.873 \\ & c=17.524 \end{aligned}$	$\begin{gathered} a=10.449 \\ b=11.199 \\ c=17.78 \end{gathered}$
$\mathrm{BC}_{4} \mathrm{KN}_{4}$	I4 ${ }_{1}$ a	$\begin{aligned} & a=6.976 \\ & c=14.21 \end{aligned}$	$\begin{gathered} a=7.151 \\ c=14.563 \end{gathered}$
$\mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{BH}_{3}$	Pnma	$\begin{gathered} a=11.10 \\ b=6.58 \\ c=4.92 \end{gathered}$	$\begin{gathered} a=11.07 \\ b=6.35 \\ c=4.88 \end{gathered}$
$\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{BH}_{3}\right)_{2}$	C121	$\begin{aligned} a & =9.10 \\ b & =4.37 \\ c & =6.44 \\ \beta & =93.19 \end{aligned}$	$\begin{aligned} & a=9.12 \\ & b=4.29 \\ & c=6.34 \\ & \beta=93.1 \end{aligned}$
$\mathrm{KAl}\left(\mathrm{NH}_{2}\right)_{4}$	C222 ${ }_{1}$	$\begin{gathered} a=10 \\ b=5.8 \\ c=10.14 \end{gathered}$	$\begin{gathered} a=10.2 \\ b=5.82 \\ c=10.142 \end{gathered}$
$\mathrm{K}_{5} \mathrm{C}_{2} \mathrm{HN}_{4}$	P4/ncc	$\begin{gathered} a=9.095 \\ c=11.029 \end{gathered}$	$\begin{gathered} a=9.225 \\ c=11.202 \end{gathered}$

$\mathrm{KCaN}_{3} \mathrm{H}_{6}$	$\mathrm{P} 21 / \mathrm{c}$	$\begin{aligned} & a=6.767 \\ & b=11.68 \\ & c=6.624 \\ & \beta=106.7 \end{aligned}$	$\begin{gathered} a=6.797 \\ b=11.834 \\ c=6.797 \\ \beta=106.82 \end{gathered}$
$\mathrm{K}\left(\mathrm{HCN}_{2}\right)$	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	$\begin{gathered} a=7.087 \\ b=9.09 \\ c=9.014 \end{gathered}$	$\begin{aligned} & a=7.229 \\ & b=9.172 \\ & c=9.158 \end{aligned}$
$\mathrm{K}_{2} \mathrm{LiAlH}_{6}$	R-3m	$\begin{aligned} & a=5.62 \\ & c=27.4 \end{aligned}$	$\begin{gathered} a=5.62 \\ c=27.31 \end{gathered}$
$\mathrm{KLi}_{3}\left(\mathrm{NH}_{2}\right)_{4}$	I4 1_{1} amd	$\begin{gathered} a=7.238 \\ c=23.956 \end{gathered}$	$\begin{gathered} a=8.208 \\ c=23.699 \end{gathered}$
$\mathrm{KLi}_{7} \mathrm{~N}_{8} \mathrm{H}_{16}$	I4 1_{1} a	$\begin{gathered} a=7.18 \\ c=44.39 \end{gathered}$	$\begin{gathered} a=7.678 \\ c=46.545 \end{gathered}$
$\mathrm{K}_{2} \mathrm{Li}\left(\mathrm{NH}_{2}\right)_{3}$	P42/m	$\begin{gathered} a=6.872 \\ c=11.706 \end{gathered}$	$\begin{gathered} a=6.866 \\ c=11.726 \end{gathered}$
$\mathrm{K}_{2} \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{P} 21 / \mathrm{c}$	$\begin{gathered} a=7.455 \\ b=7.024 \\ c=13.545 \\ \beta=105.6 \end{gathered}$	$\begin{gathered} a=7.255 \\ b=7.255 \\ c=13.626 \\ \beta=105.25 \end{gathered}$
$\mathrm{K}_{2} \mathrm{NaAlH}_{6}$	P 2 1/c	$\begin{aligned} & a=5.733 \\ & b=5.754 \\ & c=8.128 \\ & \beta=89.97 \end{aligned}$	$\begin{gathered} a=5.743 \\ b=5.7492 \\ c=8.0934 \\ \beta=89.99 \end{gathered}$
$\mathrm{K}_{2} \mathrm{Na}\left(\mathrm{NH}_{2}\right)_{3}$	P42/m	$\begin{gathered} a=7.351 \\ c=13.129 \end{gathered}$	$\begin{gathered} a=7.514 \\ c=13.314 \end{gathered}$
$\mathrm{K}_{3} \mathrm{Si}_{6} \mathrm{~N}_{11} \mathrm{H}_{6}$	P4332	$a=10.789$	$a=10.797$
LiAlMg ${ }_{10} \mathrm{H}_{24}$	P121	$\begin{aligned} a & =8.989 \\ b & =8.985 \\ c & =4.485 \\ \beta & =89.655 \end{aligned}$	$\begin{aligned} & a=8.915 \\ & b=8.942 \\ & c=4.449 \\ & \beta=89.65 \end{aligned}$
$\mathrm{Li}\left(\mathrm{B}(\mathrm{CN})_{4}\right)$	P43m	$\begin{gathered} a=7.849 \\ \alpha=\beta=\gamma=60.0 \end{gathered}$	$\begin{gathered} a=7.7822 \\ \alpha=\beta=\gamma=60.0 \end{gathered}$
$\mathrm{Li}_{2} \mathrm{Ca}(\mathrm{NH})_{2}$	P-3m1	$\begin{aligned} & a=3.57 \\ & c=5.95 \end{aligned}$	$\begin{aligned} & a=3.58 \\ & c=5.84 \end{aligned}$
$\mathrm{LiK}\left(\mathrm{BH}_{4}\right)_{2}$	Pnma	$\begin{gathered} a=7.91 \\ b=4.49 \\ c=13.84 \end{gathered}$	$\begin{gathered} a=7.78 \\ b=4.43 \\ c=13.72 \end{gathered}$
$\mathrm{Li}\left(\mathrm{NH}_{2} \mathrm{BH}_{3}\right)$	Pbca	$a=7.11$	$a=6.92$

		$\begin{gathered} b=13.93 \\ c=5.15 \end{gathered}$	$\begin{gathered} b=13.52 \\ c=5.07 \end{gathered}$
$\left(\mathrm{Li}\left(\mathrm{NH}_{3}\right)_{4}\right)_{2}\left(\mathrm{~B}_{6} \mathrm{H}_{6}\right)\left(\mathrm{NH}_{3}\right)_{2}$	P21/c	$\begin{gathered} a=7.483 \\ b=11.871 \\ c=10.605 \\ \beta=95.371 \end{gathered}$	$\begin{gathered} a=7.397 \\ b=11.649 \\ c=10.449 \\ \beta=95.21 \end{gathered}$
$\mathrm{LiNa}_{2} \mathrm{AlH}_{6}$	P21/c	$\begin{aligned} & a=5.165 \\ & b=5.251 \\ & c=7.339 \end{aligned}$	$\begin{aligned} & a=4.777 \\ & b=4.715 \\ & c=6.613 \end{aligned}$
$\mathrm{LiNa}_{2}\left(\mathrm{NH}_{2}\right)_{3}$	$\mathrm{P} 42 / \mathrm{m}$	$\begin{gathered} a=6.28 \\ c=11.15 \end{gathered}$	$\begin{gathered} a=6.17 \\ c=10.90 \end{gathered}$
$\mathrm{LiSc}\left(\mathrm{BH}_{4}\right)_{4}$	P-42c	$\begin{gathered} a=6.08 \\ c=12.03 \end{gathered}$	$\begin{gathered} a=6.45 \\ c=11.95 \end{gathered}$
$\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}$	Pbca	$\begin{gathered} a=17.49 \\ b=9.41 \\ c=8.73 \end{gathered}$	$\begin{gathered} a=17.73 \\ b=9.35 \\ c=8.68 \end{gathered}$
$\left(\mathrm{NH}_{4}\right) \mathrm{B}(\mathrm{CN})_{4}$	I41/a	$\begin{gathered} a=7.132 \\ c=14.745 \end{gathered}$	$\begin{gathered} a=7.453 \\ c=14.617 \end{gathered}$
$\mathrm{NaAl}\left(\mathrm{NH}_{2}\right)_{4}$	$\mathrm{P} 2{ }_{1} / \mathrm{c}$	$\begin{gathered} a=7.328 \\ b=6.047 \\ c=13.151 \\ \beta=94.04 \end{gathered}$	$\begin{gathered} a=6.565 \\ b=6.353 \\ c=15.362 \\ \beta=94.3 \end{gathered}$
$\mathrm{NaB}(\mathrm{CN})_{4}$	Fd-3mZ	$a=11.68$	$a=11.874$
$\mathrm{Si}_{2} \mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{2}$	P2 ${ }_{1} / \mathrm{c}$	$\begin{gathered} a=9.71 \\ b=11.11 \\ c=11.88 \\ \beta=102.3 \end{gathered}$	$\begin{gathered} a=10.143 \\ b=11.599 \\ c=12.422 \\ \beta=103.1 \end{gathered}$
$\mathrm{VC}_{8} \mathrm{H}_{24} \mathrm{~N}_{4}$	P-1	$\begin{gathered} a=8.29 \\ b=12.016 \\ c=13.835 \\ \alpha=75.662 \\ \beta=79.404 \\ \gamma=84.966 \end{gathered}$	$\begin{gathered} a=8.637 \\ b=12.503 \\ c=14.479 \\ \alpha=75.89 \\ \beta=79.47 \\ \gamma=85.3 \end{gathered}$
LiAlC ${ }_{4} \mathrm{H}_{16} \mathrm{~N}_{4}$	I4 ${ }_{1}$	$\begin{gathered} a=14 \\ c=9.275 \end{gathered}$	$\begin{gathered} a=14.128 \\ c=9.571 \end{gathered}$
$\mathrm{LiSi}_{3} \mathrm{C}_{9} \mathrm{H}_{27} \mathrm{~N}_{2}$	P-1	$\begin{gathered} a=8.776 \\ b=9.579 \\ c=21.949 \end{gathered}$	$\begin{gathered} a=9.077 \\ b=9.875 \\ c=22.544 \end{gathered}$

		$\alpha=100.84$	$\alpha=101.16$
		$\beta=92.18$	$\beta=91.95$
		$\gamma=115.67$	$\gamma=115$
		$a=15.785$	$a=16.2$
$\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{C}_{12} \mathrm{H}_{37} \mathrm{~N}_{5}$	$\mathrm{P} 2_{1} / \mathrm{c}$	$b=11.966$	$b=12.212$
		$c=11.804$	$c=12.205$
		$\beta=102.19$	$\beta=102.3$

Table S3: Multi-step reactions in which individual reactions are independent (not linked via intermediate compounds). $\Delta G_{\max }-\Delta G_{\min }$ is the difference between ΔG for the final step and the first step in a multi-step reaction. The $T \Delta S_{\text {conf }}$ term is given only for compounds known to have partial occupancy.

Class I: (reactions having ($\Delta G_{\max }-\Delta G_{\min }$) $\leq 10 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2}$)				
No.	Reaction	wt.\%	$\left.\begin{array}{c} \Delta U_{0}\left(T \Delta S_{\text {conf }}\right) \\ (\mathrm{kJ} / \mathrm{mol} \mathrm{H} \end{array}\right)$	$\begin{gathered} \Delta G_{\max }-\Delta G_{\min } \\ (\mathbf{k J} / \mathrm{mol} \mathrm{H} \end{gathered}$
1	$\begin{gathered} \text { Entire reaction } \\ 6 \mathrm{LiBH}_{4}+15 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+\mathrm{MgH}_{2}+8 \mathrm{Si} \rightarrow 8 \mathrm{Mg}_{2} \mathrm{Si}+3 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+55 \mathrm{H}_{2} \end{gathered}$	9.31		1.6
	$\begin{gathered} 1^{\text {st }} \text { step } \\ \mathrm{MgH}_{2}+0.5 \mathrm{Si} \rightarrow 0.5 \mathrm{Mg}_{2} \mathrm{Si}+\mathrm{H}_{2} \end{gathered}$	0.169	37.6	
	$\begin{gathered} 2^{\text {nd }} \\ 6 \mathrm{LiBH}_{4}+15 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+7.5 \mathrm{Si}_{\rightarrow} \text { step } 7.5 \mathrm{Mg}_{2} \mathrm{Si}^{2}+3 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+54 \mathrm{H}_{2} \end{gathered}$	9.136	39.2	
2	$\begin{gathered} \text { Entire reaction } \\ \begin{array}{c} 18.33 \mathrm{Si}+40 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+4 \mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 18.33 \mathrm{Mg}_{2} \mathrm{Si}+3.33 \mathrm{MgB}_{12} \mathrm{H}_{12} \\ +4 \mathrm{CaB}_{12} \mathrm{H}_{12}+132 \mathrm{H}_{2} \end{array} \end{gathered}$	9.01		2.4
	$\begin{gathered} 1^{\text {st }} \text { step } \\ 10 \mathrm{Si}+20 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+4 \mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 10 \mathrm{Mg}_{2} \mathrm{Si}+4 \mathrm{CaB}_{12} \mathrm{H}_{12}+72 \mathrm{H}_{2} \\ \hline \end{gathered}$	4.914	41.2	
	$8.33 \mathrm{Si}+20 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 8.33 \mathrm{Mg}_{2} \mathrm{Si}+3.33 \mathrm{MgB}_{12} \mathrm{H}_{12}+60 \mathrm{H}_{2}$	4.095	43.6	
3	$\begin{aligned} & \text { Entire reaction } \\ & 5 \mathrm{MgH}_{2}+10 \mathrm{Si}+15 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+6 \mathrm{KBH}_{4} \rightarrow 10 \mathrm{Mg}_{2} \mathrm{Si}+3 \mathrm{~K}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+59 \mathrm{H}_{2} \end{aligned}$	7.69		2.6
	$\begin{gathered} 1^{\text {st }} \text { step } \\ 5 \mathrm{MgH}_{2}+2.5 \mathrm{Si} \rightarrow 2.5 \mathrm{Mg}_{2} \mathrm{Si}+5 \mathrm{H}_{2} \end{gathered}$	0.652	37.6	
	$\begin{gathered} 2^{\text {nd }} \text { step } \\ 7.5 \mathrm{Si}+15 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+6 \mathrm{KBH}_{4} \rightarrow 7.5 \mathrm{Mg}_{2} \mathrm{Si}+3 \mathrm{~K}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+54 \mathrm{H}_{2} \end{gathered}$	7.042	37.3 (-2.87)	
4	$\begin{aligned} & \text { Entire reaction } \\ & 35 \mathrm{Si}+80 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+8 \mathrm{KBH}_{4} \rightarrow 35 \mathrm{Mg}_{2} \mathrm{Si}+10 \mathrm{MgB}_{12} \mathrm{H}_{12}+4 \mathrm{~K}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+252 \mathrm{H}_{2} \\ & \hline \end{aligned}$	8.86		3.5
	$\begin{gathered} 1^{\text {st }} \text { step } \\ 10 \mathrm{Si}+20 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+8 \mathrm{KBH}_{4} \rightarrow 10 \mathrm{Mg}_{2} \mathrm{Si}+4 \mathrm{~K}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+72 \mathrm{H}_{2} \end{gathered}$	2.532	37.3 (-2.9)	
	$\begin{aligned} & 2^{\text {nd }} \end{aligned}$	6.329	43.6	

5	$\begin{gathered} \text { Entire reaction } \\ 16 \mathrm{LiBH}_{4}+28.33 \mathrm{Si}+60{\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 28.33 \mathrm{Mg}_{2} \mathrm{Si}^{2}+8 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}}^{+3.33 \mathrm{MgB}_{12} \mathrm{H}_{12}+204 \mathrm{H}_{2}} \end{gathered}$	9.38		4.5
	$1^{\text {st }}$ step $16 \mathrm{LiBH}_{4}+20 \mathrm{Si}+40 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 20 \mathrm{Mg}_{2} \mathrm{Si}+8 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+144 \mathrm{H}_{2}$	6.622	39.2	
	$\begin{gathered} 2^{\text {nd }} \\ 8.33 \mathrm{Si}+20 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 8.33 \mathrm{Mg}_{2} \mathrm{Si}+3.33 \mathrm{MgB}_{12} \mathrm{H}_{12}+60 \mathrm{H}_{2} \end{gathered}$	2.759	43.62	
6	$\begin{gathered} \text { Entire reaction } \\ 25 \mathrm{MgH}_{2}+\mathrm{NaMgH}_{3}+13 \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2} \rightarrow \mathrm{NaH}+13 \mathrm{Mg}_{3} \mathrm{~N}_{2}+52 \mathrm{H}_{2} \end{gathered}$	7.28		5.3
	$\begin{gathered} 1^{\text {st }} \text { step } \\ 25 \mathrm{MgH}_{2}+12.5 \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2} \rightarrow 12.5 \mathrm{Mg}_{3} \mathrm{~N}_{2}+50 \mathrm{H}_{2} \end{gathered}$	6.996	26	
	$\xrightarrow[2^{\text {nd }}]{ }$ step	0.28	31.3	
7	$\begin{gathered} \text { Entire reaction } \\ 4 \mathrm{MgH}_{2}+47 \mathrm{Si}+108 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 47 \mathrm{Mg}_{2} \mathrm{Si}+18 \mathrm{MgB}_{12} \mathrm{H}_{12}+328 \mathrm{H}_{2} \end{gathered}$	9.11		6.1
	$\begin{gathered} 1^{\text {st }} \text { step } \\ 4 \mathrm{MgH}_{2}+2 \mathrm{Si} \rightarrow 2 \mathrm{Mg}_{2} \mathrm{Si}+4 \mathrm{H}_{2} \end{gathered}$	0.111	37.6	
	$\begin{aligned} & 2^{\text {nd }} \text { step } \\ & 45 \mathrm{Si}+108 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2} \rightarrow 45 \mathrm{Mg}_{2} \mathrm{Si}+18 \mathrm{MgB}_{12} \mathrm{H}_{12}+324 \mathrm{H}_{2} \end{aligned}$	9.002	43.6	
8	$\begin{gathered} \text { Entire reaction } \\ 2 \mathrm{LiBH}_{4}+\mathrm{MgH}_{2}+7 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+3.83 \mathrm{Si} \rightarrow 3.83 \mathrm{Mg}_{2} \mathrm{Si}+\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12} \\ +0.33 \mathrm{MgB}_{12} \mathrm{H}_{12}+25 \mathrm{H}_{2} \end{gathered}$	9.07		6.1
	$\begin{gathered} 1^{\text {st }} \text { step } \\ \mathrm{MgH}_{2}+0.5 \mathrm{Si} \rightarrow 0.5 \mathrm{Mg}_{2} \mathrm{Si}+\mathrm{H}_{2} \end{gathered}$	0.363	37.6	
	$\begin{gathered} 2^{\text {nd }} \text { step } \\ 2 \mathrm{LiBH}_{4}+5 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+2.5 \mathrm{Si} \rightarrow 2.5 \mathrm{Mg}_{2} \mathrm{Si}^{2}+\mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+18 \mathrm{H}_{2} \\ \hline \end{gathered}$	6.533	39.2	
	$\begin{aligned} & 3^{\text {rd }} \text { step } \\ & 2 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+0.83 \mathrm{Si} \rightarrow \\ & 0.83 \mathrm{Mg}_{2} \mathrm{Si}+0.33 \mathrm{MgB}_{12} \mathrm{H}_{12}+6 \mathrm{H}_{2} \end{aligned}$	2.178	43.6	
9	Entire reaction $\mathrm{MgH}_{2}+6 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2}+3.42 \mathrm{Si} \rightarrow 3.42 \mathrm{Mg}_{2} \mathrm{Si}+0.17 \mathrm{MgB}_{12} \mathrm{H}_{12}$ $+\mathrm{CaB} \mathrm{Cl}_{12} \mathrm{H}_{12}+22 \mathrm{H}_{2}$	8.6		6.1
	$\begin{gathered} 1^{\text {st }} \text { step } \\ \mathrm{MgH}_{2}+0.5 \mathrm{Si} \rightarrow 0.5 \mathrm{Mg}_{2} \mathrm{Si}+\mathrm{H}_{2} \end{gathered}$	0.391	37.6	

	$\begin{gathered} 2^{\text {nd }} \text { step } \\ 5 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2}+2.5 \mathrm{Si} \rightarrow 2.5 \mathrm{Mg}_{2} \mathrm{Si}+\mathrm{CaB}_{12} \mathrm{H}_{12}+18 \mathrm{H}_{2} \end{gathered}$	7.033	41.2	
	$\begin{gathered} 3^{\text {rd }} \text { step } \\ \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+0.42 \mathrm{Si} \rightarrow 0.42 \mathrm{Mg}_{2} \mathrm{Si}+0.17 \mathrm{MgB}_{12} \mathrm{H}_{12}+3 \mathrm{H}_{2} \end{gathered}$	1.172	43.62	
10	$\begin{gathered} \text { Entire reaction } \\ 46 \mathrm{LiBH}_{4}+10 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+5 \mathrm{Si} \rightarrow 35 \mathrm{LiH}+5 \mathrm{Mg}_{2} \mathrm{Si}+5.5 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+81.5 \mathrm{H}_{2} \end{gathered}$	9.77		8
	$\stackrel{1^{\text {st }} \text { step }}{4 \mathrm{LiBH}_{4}+10 \mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+5 \mathrm{Si} \rightarrow 5 \mathrm{Mg}_{2} \mathrm{Si}+2 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+36 \mathrm{H}_{2}}$	4.314	39.2	
	$\begin{gathered} 2^{\text {nd }} \text { step } \\ 42 \mathrm{LiBH}_{4} \rightarrow 35 \mathrm{LiH}+3.5 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+45.5 \mathrm{H}_{2} \end{gathered}$	5.452	47.2	
11	$\begin{aligned} & \text { Entire reaction } \\ & 12 \mathrm{LiBH}_{4}+\mathrm{MgH}_{2}+\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+\mathrm{Si} \rightarrow 9.67 \mathrm{LiH}+\mathrm{Mg}_{2} \mathrm{Si}+1.17 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+17.17 \mathrm{H}_{2} \\ & \hline \end{aligned}$	9.36		9.6
	$\begin{gathered} 1^{\text {st }} \text { step } \\ \mathrm{MgH}_{2}+0.5 \mathrm{Si} \rightarrow 0.5 \mathrm{Mg}_{2} \mathrm{Si}+\mathrm{H}_{2} \end{gathered}$	0.545	37.6	
	$\begin{gathered} 2^{\text {nd }} \text { step } \\ 0.4 \mathrm{LiBH}_{4}+\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}+0.5 \mathrm{Si} \rightarrow 0.5 \mathrm{Mg}_{2} \mathrm{Si}+0.2 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+3.6 \mathrm{H}_{2} \end{gathered}$	1.963	39.2	
	$\begin{aligned} & 3^{\text {rd }} \text { step } \\ & 11.6 \mathrm{LiBH}_{4} \rightarrow 9.67 \mathrm{LiH}+0.97 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+12.57 \mathrm{H}_{2} \end{aligned}$	6.851	47.16	
12	$\begin{gathered} \text { Entire reaction } \\ 10 \mathrm{LiBH}_{4}+2 \mathrm{MgH}_{2}+\mathrm{Si} \rightarrow 8.33 \mathrm{LiH}+\mathrm{Mg}_{2} \mathrm{Si}+0.83 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+12.83 \mathrm{H}_{2} \\ \hline \end{gathered}$	8.67		9.6
	$\begin{gathered} 1^{\text {st }} \text { step } \\ 2 \mathrm{MgH}_{2}+\mathrm{Si} \rightarrow \mathrm{Mg}_{2} \mathrm{Si}+2 \mathrm{H}_{2} \end{gathered}$	1.35	37.6	
	$\begin{gathered} 2^{\text {nd }} \text { step } \\ 10 \mathrm{LiBH}_{4} \rightarrow 8.33 \mathrm{LiH}+0.83 \mathrm{Li}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}+10.83 \mathrm{H}_{2} \end{gathered}$	7.315	47.2	
Class II: (reactions having $\left.10 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2} \leq\left(\Delta G_{\max }-\Delta G_{\min }\right) \leq 20 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2}\right)$				
1	Entire reaction $33 \mathrm{MgH}_{2}+17 \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2}+2 \mathrm{KMgH}_{3} \rightarrow 17 \mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{K}_{2} \mathrm{MgH}_{4}+68 \mathrm{H}_{2}$	7		12.6
	$\begin{gathered} 1^{\text {st }} \text { step } \\ 33 \mathrm{MgH}_{2}+16.5 \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2} \rightarrow 16.5 \mathrm{Mg}_{3} \mathrm{~N}_{2}+66 \mathrm{H}_{2} \end{gathered}$	6.791	26	
	$\begin{aligned} & 2^{\mathrm{nd} \mathrm{~d}} \text { step } \\ & 0.5 \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2}+2 \mathrm{KMgH}_{3} \rightarrow 0.5 \mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{K}_{2} \mathrm{MgH}_{4}+2 \mathrm{H}_{2} \end{aligned}$	0.206	38.6	
2	$\begin{gathered} \text { Entire reaction } \\ 10 \mathrm{MgH}_{2}+\mathrm{NaMgH}_{3}+6 \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2}+2 \mathrm{KMgH}_{3} \rightarrow \mathrm{NaH}+6 \mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{K}_{2} \mathrm{MgH}_{4}+24 \mathrm{H}_{2} \end{gathered}$	6.17		12.6

Estimated reaction temperatures of metal hydride mixtures

We estimated the reaction temperatures of the 72 of the single-step reactions listed in Table S2 and every step associated with the 23 multi-step reactions in Tables 3 and S3 as described in Eq. (3) of the text. The reaction temperatures of $\mathrm{MgH}_{2} / \mathrm{Mg}\left(\mathrm{NH}_{2}\right)_{2}$ and $\mathrm{LiNH}_{2} / \mathrm{LiH} / \mathrm{KBH}_{4}$ mixtures for a H_{2} pressure ofno 1 bar were taken from the van’t Hoff plots in Figs. 2 and 3. Figures S1—S4 show the estimated temperature needed to generate a partial pressure of H_{2} of 1 bar for each reaction ($\mathrm{T}_{\text {est }}$) as a function of a H_{2} capacity for the single-step reactions in each category listed in Table 2. Figures S5-S7 show the cumulative H_{2} capacity of each reaction as a function of $\mathrm{T}_{\text {est }}$ for the multi-step reactions where the relevant steps are independent without any connection between the steps. Figures S5 and S6 show the reactions included in Class I of Table S3 and Fig. S7 shows the reactions included in Class II of Table S3.

Figure S1. The estimated temperature for generating a partial pressure of H_{2} of 1 bar ($\mathrm{T}_{\text {est }}$) as a function of H_{2} capacity (wt.\%) for the "interesting reactions" in Table 2.

Figure S2. The estimated temperature for generating a partial pressure of H_{2} of 1 bar ($\mathrm{T}_{\text {est }}$) as a function of H_{2} capacity (wt.\%) for thirteen reactions involving $\mathrm{B}_{12} \mathrm{H}_{12}$ species in Table 2.

Figure S3. The estimated temperature for generating a partial pressure of H_{2} of 1 bar ($\mathrm{T}_{\text {est }}$) as a function of H_{2} capacity ($\mathrm{wt} . \%$) for the 39 reactions involving refractory materials in Table 2.

Figure S4. The estimated temperature for generating a partial pressure of H_{2} of 1 bar ($\mathrm{T}_{\text {est }}$) as a function of H_{2} capacity (wt. \%) for the nineteen reactions involving C in Table 2.

Figure S5. The cumulative H_{2} capacity ($\mathrm{wt} . \%$) as a function of the estimated temperature for generating a partial pressure of H_{2} of 1 bar ($\mathrm{T}_{\text {est }}$) for the first six reactions in Class I of Table S3.

Figure S6. The cumulative H_{2} capacity (wt.\%) as a function of the estimated temperature for generating a partial pressure of H_{2} of $1 \mathrm{bar}\left(\mathrm{T}_{\text {est }}\right)$ for the second six reactions in Class I of Table S3.

Figure S7. The cumulative H_{2} capacity ($\mathrm{wt} . \%$) as a function of the estimated temperature for generating a partial pressure of H_{2} of 1 bar ($\mathrm{T}_{\text {est }}$) for the two reactions in Class II of Table S3.

[^0]: * Corresponding author. Email: david.sholl@chbe.gatech.edu

