# **SUPPORTING INFORMATION**

# **CP-ART-12-2010-002958**

Supporting information for the manuscript titled "A critical theoretical study on the two-photon absorption properties of some selective triaryl borane-1-naphthylphenyl amine based charge transfer molecules"

Md. Mehboob Alam, Mausumi Chattopadhyaya, and Swapan Chakrabarti Department of Chemistry, University of Calcutta, 92 A.P.C. Road Kolkata 700009, India. **Contents:** 

- 1) Gas phase optimized co-ordinates of the target molecules a) BN1, b) BN2, c) BN3 and d) benchmark molecule in THF solvent
- 2) Table for Gas phase TPA tensor elements and two photon transition probability (in a.u) of BN1 molecule using cc-pVDZ, aug-cc-pVDZ and cc-pVTZ basis sets and CAMB3LYP functional
- 3) One photon data for the benchmark molecule at CAMB3LYP/cc-pVDZ level of theory in THF solvent
- 4) TPA tensor elements of the benchmark molecule obtained by using CAM-B3LYP/cc-pVDZ basis set level of theory in THF solvent
- 5) Contributing orbitals involved in electronic transitions in benchmark molecule
- 6) Tables for Gas phase Transition moment between the excited states of BN1, BN2 and BN3 molecules
- 7) Formula used for the Sum-over states calculations

- 1. Gas phase optimized co-ordinates of the target molecules a) BN1, b) BN2 and c) BN3 and d) benchmark molecule; Optimization has been done at DFT level of theory using B3LYP functional and 6-311G (d, p) basis set
- a) Optimized co-ordinates of BN1 molecule



| С | -2.007530 | 0.062734  | -0.021173 |
|---|-----------|-----------|-----------|
| С | -1.108123 | -1.014561 | 0.133979  |
| С | -1.421254 | 1.336591  | -0.176221 |
| С | 0.266506  | -0.839317 | 0.144243  |
| С | -0.047453 | 1.529053  | -0.191973 |
| С | 0.824030  | 0.439316  | -0.028218 |
| С | -4.174728 | -1.493445 | -0.526253 |
| С | -5.333745 | -2.037978 | 0.062658  |
| С | -3.604189 | -2.211721 | -1.596531 |
| С | -5.880582 | -3.240360 | -0.376467 |
| С | -4.163715 | -3.398584 | -2.061195 |
| С | -5.300069 | -3.920674 | -1.445702 |
| С | -4.505434 | 0.999030  | 0.490207  |
| С | -4.143827 | 1.841838  | 1.560582  |
| С | -5.765809 | 1.221328  | -0.100234 |
| С | -4.994856 | 2.841578  | 2.023298  |
| С | -6.608538 | 2.239324  | 0.336826  |
| С | -6.227274 | 3.048453  | 1.405882  |
| С | 2.862834  | 1.667325  | -0.713696 |
| С | 2.457378  | 2.012350  | -2.012304 |
| С | 3.932299  | 2.361005  | -0.133807 |
| С | 3.096838  | 3.037660  | -2.698977 |
| С | 4.576720  | 3.375437  | -0.836654 |
| С | 4.162307  | 3.725442  | -2.118621 |

| С | 3.000338  | -0.174000 | 0.907192  |
|---|-----------|-----------|-----------|
| С | 2.740194  | -0.083893 | 2.258501  |
| С | 4.032597  | -1.042701 | 0.430439  |
| С | 3.488182  | -0.829318 | 3.193522  |
| С | 4.802166  | -1.777760 | 1.389864  |
| С | 4.312112  | -1.225430 | -0.949087 |
| С | 4.505049  | -1.648977 | 2.770960  |
| С | 5.833911  | -2.637198 | 0.928869  |
| С | 5.312908  | -2.072955 | -1.358837 |
| С | 6.087772  | -2.780851 | -0.412384 |
| В | -3.553453 | -0.142666 | -0.018713 |
| Ν | 2.226871  | 0.603145  | -0.016631 |
| Н | -1.500126 | -2.017763 | 0.258495  |
| Н | -2.062747 | 2.203000  | -0.292605 |
| Η | 0.921712  | -1.691551 | 0.277359  |
| Η | 0.356725  | 2.525542  | -0.316713 |
| Н | -5.804683 | -1.513334 | 0.886691  |
| Η | -2.715905 | -1.822198 | -2.081534 |
| Η | -6.763137 | -3.643660 | 0.108407  |
| Η | -3.712027 | -3.919840 | -2.898423 |
| Η | -5.731821 | -4.851273 | -1.798087 |
| Η | -3.185286 | 1.698070  | 2.046981  |
| Η | -6.082345 | 0.591139  | -0.924101 |
| Η | -4.696328 | 3.463260  | 2.860630  |
| Η | -7.565316 | 2.397388  | -0.149223 |
| Η | -6.887431 | 3.834229  | 1.757098  |
| Η | 1.641735  | 1.473171  | -2.478126 |
| Η | 4.258732  | 2.101277  | 0.865186  |
| Η | 2.768312  | 3.290064  | -3.701147 |
| Η | 5.403929  | 3.899496  | -0.370843 |
| Η | 4.663231  | 4.518933  | -2.660556 |
| Η | 1.948651  | 0.573328  | 2.598752  |
| Η | 3.261393  | -0.737210 | 4.249509  |
| Н | 3.723313  | -0.688278 | -1.680334 |
| Н | 5.090847  | -2.215304 | 3.487019  |
| Н | 6.417537  | -3.185841 | 1.660675  |
| Н | 5.510180  | -2.201955 | -2.417045 |
| Н | 6.877941  | -3.441822 | -0.750218 |

## b) Optimized co-ordinates of BN2 molecule



| С | 4.294723  | -0.016050 | -0.025516 |
|---|-----------|-----------|-----------|
| С | 3.482274  | -1.085302 | 0.404621  |
| С | 3.622002  | 1.152240  | -0.439076 |
| С | 2.097636  | -0.989710 | 0.438543  |
| С | 2.236402  | 1.242205  | -0.438931 |
| С | 1.440965  | 0.175090  | 0.009355  |
| С | -0.035803 | 0.274359  | 0.031683  |
| С | -0.682574 | 1.480482  | 0.340276  |
| С | -0.847911 | -0.835487 | -0.250263 |
| С | -2.067093 | 1.577082  | 0.375933  |
| С | -2.231752 | -0.745537 | -0.234964 |
| С | -2.867628 | 0.463930  | 0.082040  |
| С | 6.545629  | -1.507867 | -0.302282 |
| С | 7.752215  | -1.860878 | 0.335721  |
| С | 5.988197  | -2.454557 | -1.185629 |
| С | 8.357946  | -3.095330 | 0.120372  |
| С | 6.606044  | -3.677565 | -1.430401 |
| С | 7.789450  | -4.004426 | -0.770359 |
| С | 6.737650  | 1.151125  | 0.207769  |
| С | 6.326792  | 2.174228  | 1.086432  |
| С | 7.979952  | 1.322009  | -0.436565 |
| С | 7.115885  | 3.296705  | 1.320063  |
| С | 8.759454  | 2.456505  | -0.231063 |
| С | 8.331830  | 3.444263  | 0.654678  |
| С | -4.975497 | 1.722092  | -0.223281 |
| С | -6.106935 | 2.124626  | 0.498701  |

| С | -4.560022 | 2.500563  | -1.315676 |
|---|-----------|-----------|-----------|
| С | -6.802048 | 3.274635  | 0.135130  |
| С | -5.251792 | 3.655891  | -1.659339 |
| С | -6.379329 | 4.051448  | -0.939901 |
| С | -4.995570 | -0.532973 | 0.760194  |
| С | -4.697685 | -0.865203 | 2.065560  |
| С | -6.004186 | -1.258017 | 0.048050  |
| С | -5.382185 | -1.907121 | 2.725227  |
| С | -6.709920 | -2.298695 | 0.735048  |
| С | -6.318952 | -1.007379 | -1.313064 |
| С | -6.375138 | -2.601301 | 2.079935  |
| С | -7.716607 | -3.019354 | 0.040088  |
| С | -7.293443 | -1.731683 | -1.956314 |
| С | -8.006006 | -2.742706 | -1.272833 |
| В | 5.856014  | -0.122752 | -0.040403 |
| Ν | -4.283385 | 0.530537  | 0.117587  |
| Η | 3.950396  | -2.002052 | 0.745496  |
| Η | 4.199560  | 1.998633  | -0.793969 |
| Η | 1.515273  | -1.819427 | 0.823176  |
| Н | 1.760263  | 2.142782  | -0.810330 |
| Н | -0.091909 | 2.351450  | 0.600579  |
| Н | -0.388219 | -1.778121 | -0.524367 |
| Η | -2.533361 | 2.516496  | 0.644959  |
| Η | -2.832088 | -1.613969 | -0.477336 |
| Η | 8.213234  | -1.159562 | 1.022483  |
| Η | 5.062702  | -2.218511 | -1.699045 |
| Η | 9.276406  | -3.346641 | 0.639841  |
| Η | 6.162767  | -4.378809 | -2.129194 |
| Η | 8.266426  | -4.961989 | -0.949614 |
| Η | 5.380038  | 2.077554  | 1.606126  |
| Η | 8.330841  | 0.556861  | -1.120035 |
| Η | 6.781849  | 4.059304  | 2.015358  |
| Η | 9.702670  | 2.568504  | -0.754823 |
| Η | 8.943130  | 4.323749  | 0.826027  |
| Η | -6.441381 | 1.533825  | 1.342004  |
| Н | -3.696244 | 2.193526  | -1.892386 |
| Η | -7.676347 | 3.566972  | 0.706240  |
| Η | -4.914032 | 4.243149  | -2.506236 |
| Η | -6.920024 | 4.948861  | -1.216476 |
| Η | -3.926200 | -0.310353 | 2.586279  |
| Η | -5.126509 | -2.143550 | 3.751819  |

Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2011

| Н | -5.778587 | -0.235171 | -1.843783 |
|---|-----------|-----------|-----------|
| Η | -6.912462 | -3.395546 | 2.586946  |
| Н | -8.252319 | -3.801587 | 0.567723  |
| Н | -7.517741 | -1.527844 | -2.997222 |
| Н | -8.776332 | -3.302569 | -1.791111 |

## c) Optimized co-ordinates of BN3 molecule



| С | 8.950383  | 1.220511  | 0.213812  |
|---|-----------|-----------|-----------|
| С | 8.498614  | 2.437740  | -0.335758 |
| С | 10.181951 | 1.246147  | 0.899775  |
| С | 9.239079  | 3.610563  | -0.220639 |
| С | 10.912375 | 2.421908  | 1.044934  |
| С | 10.445348 | 3.606578  | 0.477875  |
| С | 8.861790  | -1.479622 | -0.062776 |
| С | 8.325204  | -2.660542 | 0.489445  |
| С | 10.094895 | -1.591033 | -0.737153 |
| С | 8.987831  | -3.880373 | 0.388398  |
| С | 10.746874 | -2.813542 | -0.869295 |
| С | 10.197623 | -3.960923 | -0.299259 |
| С | 6.556111  | -0.050393 | 0.048947  |
| С | 5.834129  | 0.912879  | 0.782766  |
| С | 5.792725  | -0.961616 | -0.708885 |
| С | 4.446080  | 0.955760  | 0.772771  |
| С | 4.405718  | -0.903782 | -0.748315 |
| С | 3.700559  | 0.053036  | -0.001658 |
| С | 2.219964  | 0.109251  | -0.032450 |
| С | 1.538038  | 1.334831  | -0.014486 |
| С | 1.447673  | -1.060520 | -0.083505 |
| С | 0.150969  | 1.387842  | -0.049391 |

| С | 0.060528   | -1.007364 | -0.117043 |
|---|------------|-----------|-----------|
| С | -0.622668  | 0.218318  | -0.102564 |
| С | -2.101755  | 0.275841  | -0.145575 |
| С | -2.772158  | 1.282296  | -0.856724 |
| С | -2.891493  | -0.674874 | 0.519565  |
| С | -4.158565  | 1.338076  | -0.909178 |
| С | -4.277238  | -0.619148 | 0.486469  |
| С | -4.936628  | 0.389556  | -0.230836 |
| С | -7.063434  | 1.645850  | -0.349423 |
| С | -6.647807  | 2.758049  | 0.400565  |
| С | -8.209540  | 1.762589  | -1.147343 |
| С | -7.352618  | 3.953942  | 0.335496  |
| С | -8.917189  | 2.960648  | -1.192083 |
| С | -8.493855  | 4.065459  | -0.458529 |
| С | -7.050635  | -0.810793 | -0.499511 |
| С | -8.041605  | -1.262797 | 0.429939  |
| С | -6.752104  | -1.568390 | -1.613173 |
| С | -8.355755  | -0.563277 | 1.624427  |
| С | -8.729090  | -2.489011 | 0.152806  |
| С | -7.418286  | -2.785785 | -1.864639 |
| С | -9.312980  | -1.037810 | 2.488534  |
| С | -9.718159  | -2.942936 | 1.064584  |
| С | -8.393992  | -3.231959 | -1.008383 |
| С | -10.008093 | -2.234830 | 2.204140  |
| В | 8.121240   | -0.102964 | 0.067888  |
| Ν | -6.354497  | 0.419103  | -0.270239 |
| Η | 7.558284   | 2.457995  | -0.875243 |
| Η | 10.563302  | 0.330292  | 1.337485  |
| Η | 8.874578   | 4.528456  | -0.669082 |
| Η | 11.848127  | 2.414930  | 1.593404  |
| Η | 11.018775  | 4.521695  | 0.579351  |
| Η | 7.380306   | -2.615110 | 1.019479  |
| Η | 10.540232  | -0.705026 | -1.175975 |
| Η | 8.559550   | -4.769222 | 0.839006  |
| Η | 11.685675  | -2.871982 | -1.409418 |
| Η | 10.709964  | -4.912675 | -0.389935 |
| Η | 6.374066   | 1.628232  | 1.393203  |
| Н | 6.300799   | -1.714895 | -1.300788 |
| Н | 3.929517   | 1.684880  | 1.386945  |
| Η | 3.859937   | -1.594076 | -1.381724 |
| Н | 2.102558   | 2.259988  | 0.009784  |

| Η | 1.940461   | -2.026099 | -0.081755 |
|---|------------|-----------|-----------|
| Η | -0.341976  | 2.352795  | -0.017220 |
| Η | -0.502498  | -1.931928 | -0.175283 |
| Η | -2.198921  | 2.012571  | -1.416585 |
| Η | -2.413098  | -1.450706 | 1.106493  |
| Н | -4.643556  | 2.113732  | -1.488471 |
| Η | -4.860686  | -1.354789 | 1.026620  |
| Н | -5.772772  | 2.677491  | 1.033541  |
| Η | -8.545309  | 0.913467  | -1.729035 |
| Н | -7.014023  | 4.800847  | 0.922280  |
| Н | -9.802355  | 3.028811  | -1.814903 |
| Η | -9.044648  | 4.997675  | -0.500782 |
| Η | -5.993912  | -1.214722 | -2.301851 |
| Н | -7.829042  | 0.353959  | 1.851096  |
| Η | -7.162381  | -3.357810 | -2.749250 |
| Η | -9.536840  | -0.490916 | 3.397492  |
| Н | -10.239847 | -3.868586 | 0.845051  |
| Η | -8.916879  | -4.162020 | -1.203896 |
| Η | -10.765001 | -2.594250 | 2.892154  |

#### d) Optimized co-ordinates of the benchmark molecule



| Н | -5.443482 | -1.743010 | -0.898955 |
|---|-----------|-----------|-----------|
| Н | -5.749001 | 2.051701  | 1.079487  |
| H | -8.166534 | 1.905511  | 1.015077  |
| C | -3.930221 | 0.329119  | 0.167360  |
| С | -2.987990 | -0.521825 | -0.288604 |
| Η | -3.605764 | 1.244888  | 0.655489  |
| Η | -3.304315 | -1.441275 | -0.774297 |
| С | -1.540461 | -0.353762 | -0.202400 |
| С | -0.705945 | -1.374217 | -0.697665 |
| С | -0.912503 | 0.780663  | 0.350901  |
| С | 0.675720  | -1.277073 | -0.626560 |
| Н | -1.161434 | -2.257482 | -1.134915 |
| С | 0.467363  | 0.883967  | 0.389368  |
| Η | -1.512334 | 1.593283  | 0.744236  |
| С | 1.312986  | -0.141506 | -0.088671 |
| Н | 1.282792  | -2.092955 | -1.005099 |
| Η | 0.915382  | 1.779214  | 0.808093  |
| Ν | -9.613916 | -0.091661 | -0.077074 |
| В | 2.869470  | -0.019304 | -0.027833 |
| С | 3.524177  | 1.424672  | 0.025840  |
| С | 3.249304  | 2.388084  | -0.976716 |
| С | 4.403624  | 1.797774  | 1.076554  |
| С | 3.842603  | 3.652556  | -0.919361 |
| С | 4.951666  | 3.080358  | 1.111845  |
| С | 4.688153  | 4.026381  | 0.121367  |
| Н | 3.636957  | 4.363213  | -1.715306 |
| Н | 5.613072  | 3.344852  | 1.932244  |
| С | 3.746337  | -1.340815 | -0.020533 |
| С | 4.754813  | -1.564214 | -0.994571 |
| С | 3.548371  | -2.341238 | 0.964592  |
| С | 5.501634  | -2.742898 | -0.975205 |
| С | 4.339309  | -3.493381 | 0.966236  |
| С | 5.315182  | -3.722392 | -0.000383 |
| Н | 6.259810  | -2.894721 | -1.738468 |
| Н | 4,186880  | -4.231000 | 1.749694  |
| С | 2.514896  | -2.213902 | 2.068186  |
| Ċ | 5.041862  | -0.566198 | -2.096940 |
| Ċ | 6.129321  | -4.993328 | -0.006359 |
| Ċ | 4.759079  | 0.848957  | 2.202480  |
| Ē | 2.341951  | 2.106136  | -2.159557 |
| Ċ | 5.287002  | 5.410190  | 0.188714  |

| Н | 2.834796   | -2.768669 | 2.953786  |
|---|------------|-----------|-----------|
| Η | 2.337075   | -1.180930 | 2.367653  |
| Н | 1.548214   | -2.620517 | 1.756229  |
| Η | 5.321268   | 0.410299  | -1.696827 |
| Η | 5.857227   | -0.918266 | -2.732169 |
| Η | 4.171105   | -0.412808 | -2.741490 |
| Η | 7.132577   | -4.822421 | -0.404477 |
| Η | 6.228838   | -5.408444 | 0.999334  |
| Η | 5.656857   | -5.759649 | -0.631261 |
| Η | 5.224957   | -0.065387 | 1.830014  |
| Η | 5.452733   | 1.323073  | 2.899845  |
| Η | 3.876170   | 0.549618  | 2.775347  |
| Η | 2.627667   | 2.725575  | -3.013294 |
| Η | 2.371689   | 1.064054  | -2.478644 |
| Η | 1.298047   | 2.332124  | -1.922799 |
| Η | 5.298183   | 5.888418  | -0.793291 |
| Η | 4.711318   | 6.055268  | 0.861950  |
| Η | 6.312861   | 5.382953  | 0.565501  |
| С | -10.430468 | 0.884961  | 0.624165  |
| С | -10.242354 | -1.329653 | -0.507841 |
| Η | -10.285256 | 0.856380  | 1.713775  |
| Η | -11.480698 | 0.686913  | 0.414442  |
| Η | -10.212177 | 1.900209  | 0.279843  |
| Η | -9.923487  | -1.604358 | -1.517742 |
| Η | -11.322136 | -1.189585 | -0.533152 |
| Н | -10.020793 | -2.173833 | 0.160854  |

### Table: S1

1. Table for TPA tensor elements and two photon transition probability (in a.u) of BN1 molecule using cc-pVDZ, aug-cc-pVDZ and cc-pVTZ basis sets and CAMB3LYP functional (Gas Phase results)

| Basis - Set | States |                 | Т               | $\delta_{\mathrm{TP}}$ ( in 10 <sup>5</sup> |                 |                 |                 |        |
|-------------|--------|-----------------|-----------------|---------------------------------------------|-----------------|-----------------|-----------------|--------|
|             |        | S <sub>xx</sub> | S <sub>yy</sub> | S <sub>zz</sub>                             | S <sub>xy</sub> | S <sub>xz</sub> | S <sub>yz</sub> | order) |
| cc-pVDZ     | 1      | 20.5            | 18.2            | -207.3                                      | -15.7           | 18.9            | 6.5             | 2.369  |
|             | 2      | -15.2           | -19.7           | -170.2                                      | 22.3            | 53.5            | -44.9           | 2.455  |
| aug-cc-     | 1      | -21.1           | -20.4           | 190.4                                       | 17.1            | -15.8           | -9.1            | 1.98   |
| pVDZ        | 2      | -13.2           | -17.2           | -175.6                                      | 19.5            | 52.8            | -45.5           | 2.52   |
| cc-pVTZ     | 1      | -20.3           | -18.8           | 194.9                                       | 16.2            | -16.9           | -7.7            | 2.084  |
|             | 2      | 13.6            | 17.8            | 170.6                                       | -20.4           | -52.0           | 43.7            | 2.403  |

## Table: S2

2. Table for One-photon absorption data – Excitation energy (in eV), Transition moment (in a.u), Lambda parameter, kappa values and Orbitals involved in the transition ( $H \equiv HOMO$ ,  $L \equiv LUMO$ ) for  $S_1$ state of benchmark molecule in THF solvent

| State | Excitation  | Transition moment in a.u |        |         | Λ      | к       | Orbitals         |
|-------|-------------|--------------------------|--------|---------|--------|---------|------------------|
|       | Energy (eV) | Х                        | Y      | Z       |        |         | involved         |
| 1     | 3.30        | -0.1249                  | 0.0401 | -4.6139 | 0.5673 | -0.6442 | H – L            |
|       |             |                          |        |         |        | -0.1840 | H - L + 1        |
|       |             |                          |        |         |        | -0.1545 | H <b>-</b> 1 – L |

### Table: S3

3. TPA tensor elements and TP transition probability (in 10<sup>5</sup> a.u order) of the benchmark molecule using CAM-B3LYP/cc-pVDZ basis set level of theory in THF solvent

| States | S <sub>xx</sub> | $\mathbf{S}_{\mathbf{y}\mathbf{y}}$ | S <sub>zz</sub> | S <sub>xy</sub> | S <sub>xz</sub> | $\mathbf{S}_{\mathbf{yz}}$ | δ <sub>TP</sub> (in<br>a.u) |
|--------|-----------------|-------------------------------------|-----------------|-----------------|-----------------|----------------------------|-----------------------------|
| 1      | 12.5            | 2.2                                 | -573.1          | 5.3             | -8.3            | 4.2                        | 19.39                       |



## 4. Orbital pictures of benchmark molecule

Fig: S1. Molecular orbital pictures of benchmark molecule in THF solvent.

### Table: S4

a) Table for Dipole moment difference between ground and  $1^{st}$  excited states  $(\mu^{11})$ 

| Molecule | $\mu^{11}$ |        |        |  |
|----------|------------|--------|--------|--|
|          | X          | Y      | Z      |  |
| BN1      | -0.260     | 0.493  | -2.450 |  |
| BN2      | -1.206     | -0.266 | -1.758 |  |
| BN3      | -1.701     | -0.662 | 0.144  |  |

b) Table for Dipole moment difference between ground and  $2^{nd}$  excited states  $(\mu^{22})$ 

| Molecule | $\mu^{22}$ |        |        |  |
|----------|------------|--------|--------|--|
|          | X          | Y      | Z      |  |
| BN1      | -1.222     | 0.980  | 0.565  |  |
| BN2      | -0.973     | -0.122 | -1.408 |  |
| BN3      | -0.447     | -0.193 | -2.537 |  |

## c) Table for transition moment between $1^{st}$ and $2^{nd}$ excited states ( $\mu^{21}$ )

| Molecule | $\mu^{21}$ |        |        |  |
|----------|------------|--------|--------|--|
|          | X Y Z      |        |        |  |
| BN1      | 1.310      | -1.001 | -2.821 |  |
| BN2      | -1.546     | -0.133 | 4.110  |  |
| BN3      | 1.158      | 0.543  | -3.531 |  |

## d) Table for transition moment between $1^{st}$ and $3^{rd}$ excited states( $\mu^{31}$ )

| Molecule | $\mu^{31}$ |        |        |
|----------|------------|--------|--------|
|          | Х          | Y      | Z      |
| BN1      | 0.243      | -0.067 | -0.685 |
| BN2      | -0.202     | 0.078  | 0.770  |
| BN3      | -0.061     | -0.115 | 0.394  |

| Molecule | μ <sup>32</sup> |        |        |  |
|----------|-----------------|--------|--------|--|
|          | Х               | Y      | Z      |  |
| BN1      | -0.165          | 0.105  | -0.141 |  |
| BN2      | -0.076          | -0.026 | -0.632 |  |
| BN3      | 0.050           | -0.023 | 0.981  |  |

## e) Table for transition moment between $2^{nd}$ and $3^{rd}$ excited states ( $\mu^{32}$ )

#### f) Table for excitation energy from ground to excited state

| Molecule | Excited state | Excitation energy (in |
|----------|---------------|-----------------------|
|          |               | a.u)                  |
| BN1      | 1             | 0.1375                |
|          | 2             | 0.1484                |
|          | 3             | 0.1629                |
| BN2      | 1             | 0.1388                |
|          | 2             | 0.1475                |
|          | 3             | 0.1607                |
| BN3      | 1             | 0.1401                |
|          | 2             | 0.1486                |
|          | 3             | 0.1601                |

### 2. Formula used in Sum-over states calculation

TPA transition moment tensor elements  $(S_{ij})$  are given by,

$$S_{ij} = \sum_{n} \left[ \frac{\mu_i^{0n} \mu_j^{nf}}{\omega_n - \frac{\omega_f}{2}} + \frac{\mu_j^{0n} \mu_i^{nf}}{\omega_n - \frac{\omega_f}{2}} \right]$$

Where i, j are the Cartesian components x, y

and z.

For  $S_0-S_{\rm f}$  transition involving 'n' states the formula for  $S_{ij}$  becomes

$$S_{ij} = \frac{\mu_i^{00} \mu_j^{0f}}{\omega_0 - \frac{\omega_f}{2}} + \frac{\mu_j^{00} \mu_i^{0f}}{\omega_0 - \frac{\omega_f}{2}} + \frac{\mu_i^{01} \mu_j^{1f}}{\omega_1 - \frac{\omega_f}{2}} + \frac{\mu_j^{01} \mu_i^{1f}}{\omega_1 - \frac{\omega_f}{2}} + \frac{\mu_i^{02} \mu_j^{2f}}{\omega_2 - \frac{\omega_f}{2}} + \frac{\mu_j^{02} \mu_i^{2f}}{\omega_2 - \frac{\omega_f}{2$$