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Appendix A: Direct sampling of discretized Feynman paths 

In this appendix, we give a detailed description of the Monte Carlo calculation of 

the imaginary time correlation functions. This is basically a simplified version of the 

calculation of real time correlation functions by Cao et al.43 Given two terminal points 

0
jx  and jxτ  of the vibrational-mode paths as specified by the boundary conditions of 

the j-th vibrational-mode path integration, one has the imaginary time propagator in 

the discretized form33 
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and the ( )j
nS x⎡ ⎤⎣ ⎦  has the form 
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In Eqs. (A1) and (A2), we have denoted the number of discretized time slices as P , 

j j
Px xτ= , τ β=  and thus the increment of the discretized time slice is Pε τ= . 

j
vibH  in Eq. (A1) is the Hamiltonian of j-th intramolecular normal mode and is given 

in Eq. (15). Introducing the classical trajectory ( )'j
clx τ  and the discretized Fourier 

modes { }j
la , one can decompose the path as 
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where the classical solution connecting the two end points is given by 

( ) ( ) ( )
( )

' '
0'

sinh sinh

sinh

j j
j jj

cl
j

x x
x

τ ω τ ω τ τ
τ

ω τ

⎡ ⎤+ −⎣ ⎦= ,                            (A4) 

and the Fourier modes diagonalize the quadratic action functional. Consequently, the 

imaginary action functional, Eq. (A2), becomes the form 
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Here, jτ  and jω  are defined as 
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with j jR Pω τ= . Then, Eq. (A1) is written as 
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The above equation is for the j-th vibrational mode. When all of the modes are 

considered, we can get 

( ) ( ){ }
2

0 0
1

exp exp , ;
2 sinh

P
N

j j j jvib

j j

mHx x S x xτ β τ

ω
τ τ

π ω τ=

⎛ ⎞⎡ ⎤⎛ ⎞ ⎜ ⎟− = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦⎝ ⎠
∏  

( )
221 1 2

2
1 11 1

exp 2 1 cos
2 2

jP N P N
jj l

jl
l jl j j

am Pda l Pτ π ω
τ

− −

= == =

⎧ ⎫⎧ ⎫⎛ ⎞ ⎪ ⎪ ⎪ ⎪× − − +⎡ ⎤⎨ ⎨ ⎬ ⎬⎜ ⎟ ⎣ ⎦
⎪ ⎪⎝ ⎠ ⎪ ⎪⎩ ⎭⎩ ⎭

∑∑∏∏ ∫    (A9) 

with 1
0 0 0

Nx x x=  and 1 Nx x xτ τ τ= . It is useful to define 
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Cao et al have found a linear transformation from { }j
la  to la  and its orthogonal set 
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and the following the relationship 
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Eq. (A9) then turns out to be 
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Here, the prefactor { }( )0, , ,j j
j jm x xτωΓ  appears in both the denominator and 

numerator of Eq. (18) and can be canceled out. By combining Eqs. (A3), (A4), (A12) 

and (A13), we can obtain the Eq. (16) at the discretized time slices which is required 

in Eq. (18). 
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For every step of propagation in Eq. (18), that is H due− ⋅ , we can easily get that 
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Here, A is the transformation matrix 
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with 2 2VΔ = Σ + . The matrix A has not been normalized because the normalized 

factor can be cancelled from the denominator and numerator in Eq. (18). The 

imaginary-time propagation goes on with Eqs. (A17) and (A18). 

In summary, the imaginary-time FFCF can be evaluated as follows: (i) sample 

the terminal points of the vibrational path according to the Gaussian distribution of Eq. 

(19); (ii) sample the intermediate time slices according to the Gaussian distribution of 

Eq. (20) or Eq. (A15) to obtain Eq. (16); (iii) use Eqs. (A17) and (A18) to propagate 

the denominator and numerator of Eq. (18); (iv) repeat steps (i), (ii) and (iii) to obtain 

enough samplings for the vibrational-mode path average. 

To obtain the reliable imaginary-time FFCF, the error estimate is required. When 
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Then, the error estimate is be defined as 
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M has to be large enough to make sure that δ  is very small. Finally, ( )ffC τ  at the 

dominant saddle point stτ  is used into Eq. (12) to evaluate the quantum CT rates. 

 

Appendix B: Derivation of the charge transfer rate formula with the saddle point 

approximation from Fermi gold rule 
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The CT rate formalism from Fermi gold rule is given as14,81 
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 denotes the population of the j-th normal mode and jω  is its 

frequency. 1 21 ( )
2j j j j jS Qλ ω ω−= = Δ  is the Huang-Rhys factor measuring the 

charge-phonon coupling strength and jλ  is the reorganization energy of the j-th 

mode. fiω  is the energy difference of the reactants and products. For the present 

hole self-exchange CT reaction, 0fiω = . It is useful to define that 
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If stτ  is the dominant saddle point at the imaginary time axis, the integral in Eq. (B1) 

can be translated to an integral over the line '
stt tτ= +  through the standard contour 

integral methodology: 
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From Eqs. (B2) and (B3), we can easily obtain 
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In the self-exchange reaction, 2st iτ β= . After introducing the Wick’s rotation 

t iτ→ − , the CT rate becomes 
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and Eq. (B4) is 
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Expanding ( )st iφ τ τ+  at the dominant saddle point stτ , we have 
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The CT rate with the SPA from Fermi golden rule is then obtained as 
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which is abbreviated as FGR-SPA rate formula in the present paper. We note that a 

similar result was obtained in the case of a continuous bath.82 
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