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Appendix A: Direct sampling of discretized Feynman paths

In this appendix, we give a detailed description of the Monte Carlo calculation of
the imaginary time correlation functions. This is basically a simplified version of the
calculation of real time correlation functions by Cao et al.** Given two terminal points
x) and x! of the vibrational-mode paths as specified by the boundary conditions of
the j-th vibrational-mode path integration, one has the imaginary time propagator in

the discretized form®

o )| gt o ool o

n=1
and the S([)Q]) has the form

s([xg])=$&8);[(xﬁl+xniZ)cosh(wjg)—zxni_lﬂ. (A2)

InEgs. (A1) and (A2), we have denoted the number of discretized timedicesas P,
x,=x), 7=[h and thus the increment of the discretized time dice is e=17/P.
H), inEqg. (A1) isthe Hamiltonian of j-th intramolecular normal mode and is given
in Eq. (15). Introducing the classical trajectory X} (7) and the discretized Fourier

modes {a/'}, one can decompose the path as
. . P_l .
X =%} (z,)+>_ 8 sin(lzn/P), (A3)
1=1

where the classical solution connecting the two end pointsis given by

o X! sinh(a)jz")+xg sinh[a)j (r—r')]
X (T)_ sinh(a)jr) ’ Ao

and the Fourier modes diagonalize the quadratic action functional. Consequently, the

imaginary action functional, Eq. (A2), becomesthe form
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S([)@]):Sﬂ(xg,xj;rﬁplmjz]{2[1 cos( nI/P)]I: +a)J}a'7. (A5)

=1

Here, 7, and o, are defined as

7, _S(R) (A6)
RJ

— 1

“i=a cosh(R, /2) (A7)

with R =w;7/P.Then, Eq. (Al) iswrittenas

exp —rH—“j'b
h

Xﬁjdaj exp{ 5+ m ZT {2[1 cos(7l/P) ]—+a)1}a':}. (A8)

=1 TJ

( X)= mm—;”()] (-5, (x}. i)}

The above equation is for the j-th vibrational mode. When all of the modes are

considered, we can get

/2
Hup T m;,
‘exp h JX°> 1,1 Lﬂhsinh(a)jz')} { s (%, )}
x[ﬁﬁjdaﬁ}exp{ii%{z[l oS 7Z'|/P)}P w]}%} (A9)
1=1 j=1 1=1 j=1 Tj
with [x)=]x--%') and |x,)=|xt--x'). Itis useful to define
j2 mi;'j P> —
o =— {Z[l—cos(ﬁl/P)];—?+a),}. (A10)

Cao et al have found alinear transformation from {aﬂ} to a and itsorthogonal set
{ylj}BO

N 1 ,, Wi, ¢ Y

250 =saa’+) So| Y +=3 (A1)
2 2 =¥ o

and the following the relationship
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Y98 =a, (A12)
j=1
with
N
gi:CJ/ 2.C (A13)
j=1
and
N o2 )
2 9
a :£27J . (A14)
i1

Eg. (A9) thenturnsout to be

exp| o 1%
h

Here, the prefactor F({mch)ngxj}) appears in both the denominator and

(%

x0>:1“({mj,cT)J.,xg;,x,"})xllpjj'da1 exp{—%afaf}. (A15)

numerator of Eq. (18) and can be canceled out. By combining Egs. (A3), (A4), (Al12)
and (A13), we can obtain the Eq. (16) at the discretized time slices which is required

in Eq. (18).

IR

H (u):@Z ‘Q (A16)

N
If wedefine £=) c¢;x,,then H(u) hastheform
=1

H-du/n

For every step of propagation in Eq. (18), that is e

A
exp| ——d 0
p( 7 “j

, We can easily get that

exp(—ﬂduj =A At (A17)
h A
0 exp(— du}
h
Here, A is the transformation matrix
1 1
A=| A+ -A+X (A18)

\Y, Vv
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with A=+X2+V2 . The matrix A has not been normalized because the normalized
factor can be cancelled from the denominator and numerator in Eq. (18). The
imaginary-time propagation goes on with Egs. (A17) and (A18).

In summary, the imaginary-time FFCF can be evaluated as follows: (i) sample
the terminal points of the vibrational path according to the Gaussian distribution of Eq.
(29); (ii) sample the intermediate time slices according to the Gaussian distribution of
Eg. (20) or Eq. (A15) to obtain Eq. (16); (iii) use Egs. (A17) and (A18) to propagate
the denominator and numerator of Eq. (18); (iv) repeat steps (i), (ii) and (iii) to obtain
enough samplings for the vibrational-mode path average.

To obtain the reliable imaginary-time FFCF, the error estimate is required. When

M imaginary-time FFCFs {Cj (r)}‘M have been obtained, the average

imaginary-time FFCF is

Cy(7)="2——. (A19)

Then, the error estimate is be defined as

M pu—
D C2-MC]
S=ql— (A20)
M (M —1)
M has to be large enough to make sure that & isvery small. Finally, C (7) atthe

dominant saddle point 7, isused into Eq. (12) to evaluate the quantum CT rates.

Appendix B: Derivation of the charge transfer rate formula with the saddle point

approximation from Fermi gold rule
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The CT rate formalism from Fermi gold rule is given as**#

1 e . - - -iw - i
k :FMZ J'_wdtexp{la)ﬁt—ZSj [(an +1)—nje it _(nj +1)e Jt}} . (B1)

J
— 1 . . .
Here, n, = T denotes the population of the j-th normal modeand @, isits
kgT
e /-1

frequency. S, =4, /ho, :%h‘le (AQ,)? is the Huang-Rhys factor measuring the
charge-phonon coupling strength and 4, is the reorganization energy of the j-th
mode. %@, is the energy difference of the reactants and products. For the present

hole self-exchange CT reaction, w, =0. It isuseful to define that

—exp{-9(1))

:exp{—ZSj |:(2F]j +1)—ﬁje (n, +1) "‘”}}. (B2)

j

If 7, isthedominant saddle point at the imaginary time axis, theintegral in Eq. (B1)
can be trandated to an integral over the line t =7, +t through the standard contour
integral methodology:

— VB[ 6 -t (83)
From Egs. (B2) and (B3), we can easily obtain

(7, —1) Zs [(zﬁj +1)-nje Y —(n, +1)e‘“’1‘<fs‘°] (B4)

In the self-exchange reaction, 7, =if%/2 . After introducing the Wick's rotation

t — —i7, the CT rate becomes

:h—lzl\/|2lij(Ta+ir)dr (B5)
and Eq. (B4) is
T +IT ZS |:(2F]j +1)_ﬁjewj(ﬁh/2+r)_(ﬁj +1)e—wj(ﬂh/2+r):|_ (B6)

Expanding ¢(7, +i7) at thedominant saddle point 7, we have
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¢>(r)=¢(@)—%¢" ()2 (B7)
Here,
0(z.) =28 | (20 +1) - ~(n; +1)e " |

-3's, tanh(%hﬂa)jj, (B8)
and

# (7.)= Y. SeF[n e+ (n; +1) "
]
:ZSJ.a)j2 csch(%hﬂa)j], (89)

The CT rate with the SPA from Fermi golden rule is then obtained as

Kecr spa = h_l2|v|2 eXp[_¢(Tst )] (B10)

¢ (74)
which is abbreviated as FGR-SPA rate formula in the present paper. We note that a

similar result was obtained in the case of a continuous bath.®



