Supplementary material for manuscript:

Electronic structure and magnetic properties of the graphene/Fe/Ni(111) intercalation-like system

M. Weser,¹ E. N. Voloshina,² K. Horn,¹ and Yu. S. Dedkov¹

¹Fritz-Haber Institut der Max-Planck Gesellschaft, 14195 Berlin, Germany ²Institut für Chemie und Biochemie-Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany

List of tables:

Table 1: Parameters for the calculated atomic structures of graphene/Ni(111) and graphene/1 ML Fe(111)/Ni(111).

Table 2: Binding energies of the interface states for stable crystallographic structures of graphene/Ni(111) and graphene/1 ML Fe(111)/Ni(111).

List of figures:

Fig. S1: Electronic structures of graphene/Ni(111) and graphene/1 ML Fe(111)/Ni(111) in the wide energy range $(E - E_F : -21... + 5 \text{ eV})$.

Fig. S2: Electronic structures of graphene/Ni(111) around E_F with the corresponding weights of Ni- and C-projected bands.

Fig. S3: Electronic structures of 1 ML Fe(111)/Ni(111) [for crystallographic structure see Fig. 1(c)] around E_F with the corresponding weights of Ni-projected bands.

Fig. S4: Electronic structures of 1 ML Fe(111)/Ni(111) [for crystallographic structure see Fig. 1(c)] around E_F with the corresponding weights of Fe-projected bands.

Fig. S5: Electronic structures of graphene/1 ML Fe(111)/Ni(111) around E_F with the corresponding weights of Fe- and C-projected bands.

TABLE I: Results for the atomic structure of the three graphene/FM interface models and for the clean FM surface: d_0 is the distance between the graphene overlayer and the interface FM layer (the two values for the two nonequivalent carbon atoms are indicated); d_1 is the distance between the interface FM layer and the second FM layer; d_2 is the distance between the second and third FM layers; ΔE is the energy difference between the energy calculated for the different slabs and the energy calculated for the most stable geometry; $m_{\rm FM}$ is the interface FM spin magnetic moment (the two values for the *sp* and *d* magnetizations are indicated); $m_{\rm C}$ is the interface carbon spin magnetic moment (the two values for the two values for the two nonequivalent carbon atoms are indicated).

	FM Structure of the graphene/FM interface			I interface
	Ni(111)	top-fcc	top hcp	fcc- hcp
d_0 (Å)		2.135/2.133	2.145/2.146	3.540/3.540
d_1 (Å)	2.005	2.020	2.020	2.020
d_2 (Å)	2.031	2.017	2.015	2.036
$\Delta E \ (\mathrm{eV})$		0.000	0.049	0.054
$m_{ m FM}~(\mu_B)$	-0.030/0.710	-0.025/0.543	-0.026/0.514	-0.029/0.669
$m_{ m C}~(\mu_B)$		-0.019/0.031	-0.019/0.027	0.000/0.000
	1 ML Fe/Ni(111)	TOP-FCC	TOP-HCP	FCC-HCP
d_0 (Å)		2.117/2.092	2.114/2.089	3.487/3.487
d_1 (Å)	2.039	2.029	2.019	2.028
d_2 (Å)	2.061	2.044	2.057	2.062
$\Delta E \ (\mathrm{eV})$		0.021	0.000	0.104
$m_{ m FM}~(\mu_B)$	-0.028/2.622	-0.034/2.486	-0.035/2.469	-0.022/2.616
$m_{ m C}~(\mu_B)$		-0.048/0.040	-0.050/0.039	0.000/0.000

TABLE II: Binding energies (in eV) (positive sign for states below the Fermi level and negative sign
for states above the Fermi level) of the interface hybrid states (I_i) extracted from the calculated
band structures of the graphene/FM system at the K and M points (see text for details).

State	FM = Ni(111)		FM = 1ML Fe/Ni(111)	
	$spin \uparrow$	spin \downarrow	spin \uparrow	$\mathrm{spin}\downarrow$
I_5	-3.20	-3.32	-3.56	-4.05
I_4	-0.12	-0.55	-0.28	-1.72
I_3	0.28	-0.16	0.26	-1.19
I_2	2.28	1.93	2.32	1.99
I_1	3.27	2.93	3.75	2.77

Fig. S1. Calculated majority and minority spin band structures of the graphene/Ni(111) and graphene/1 ML Fe(111)/Ni(111) interfaces for a most energetically favorable configurations. For the blue/red (thicker) lines, the carbon p_z character is used as a weighting factor.

Fig. S2. Detailed analysis of the electronic structure of the graphene/Ni(111) system where the corresponding weights of Ni- and C-projected bands are shown by thick lines.

Fig. S3. Detailed analysis of the electronic structure of the 1 ML Fe/Ni(111) system where the corresponding weights of Ni-projected bands are shown by thick lines.

Fig. S4. Detailed analysis of the electronic structure of the 1 ML Fe/Ni(111) system where the corresponding weights of Fe-projected bands are shown by thick lines.

Fig. S5. Detailed analysis of the electronic structure of the graphene/1 ML Fe(111)/Ni(111) system where the corresponding weights of Fe- and C-projected bands are shown by thick lines.