SUPPORTING INFORMATION

Using Molecular Simulation to Predict Solute Solvation and Partition Coefficients in Solvents of Different Polarity

Nuno M. Garrido^{1,2}, Miguel Jorge¹, António J. Queimada¹,

Eugénia A. Macedo¹ and Ioannis G. Economou^{2*}

- LSRE Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua do Dr. Roberto Frias, 4200 - 465 Porto, Portugal
- 2. The Petroleum Institute, Department of Chemical Engineering, PO Box 2533, Abu Dhabi, United Arab Emirates

^{*}Author to whom all correspondence should be addressed at: ieconomou@pi.ac.ae

Figure S1: Derivative of the total Hamiltonian of the system with respect to the coupling parameter λ for the LJ decoupling of benzene in different solvents.

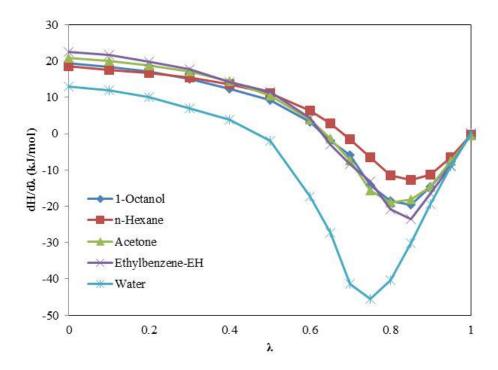


Figure S2: Derivative of the total Hamiltonian of the system with respect to the coupling parameter λ for the LJ decoupling of ethanol in different solvents

Figure S3: Derivative of the total Hamiltonian of the system with respect to the coupling parameter λ for the LJ decoupling of acetone in different solvents.