Mean-Field		$\Delta C_{p,res}$	$k_{\Delta \mathrm{H}}$	ΔH_{res}^{385}	a	b	b/b ₀	β(T ₀)	SLS	P _h
Model	Index	J/(mol.K)		kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
$\Delta S_{res}^{conf} = 0.0165$	1	0	1.89	6.12	6.87	0.0304	0.977	1 (327.6)	0.1224	0.3772
kJ/(mol.K)										
$k_{\Delta Cp} = 4.3$	2	10	2.01	6.13	7.10	0.0247	0.794	1.86 (326.8)	0.1491	0.0777
	3	20	2.15	6.13	7.30	0.0194	0.624	3.3 (326.2)	0.2695	2.062e-4
	4	30	2.34	6.14	7.45	0.0147	0.473	5.8 (326.1)	0.4837	9.130e-9
Muñoz Eaton		Cut-	ΔS_{res}^{conf}	ΔH_{cont}	a	b	b/b ₀	β(T ₀)	SLS	P _h
Model - Exact Solution	Index	off(Å)/NN	kJ/(mol.K)	kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
rDD id. 2rDD	5	4.0/1	-0.0205	-0.3292	7.11	0.0167	0.537	0.88 (323)	0.6684	1.77e-11
nearest neighbors	6	4.5/1	-0.0176	-0.1761	6.67	0.0168	0.594	2.37 (326)	0.3392	1.043e-5
$NN = 0 \rightarrow$	7	5.0/1	-0.0147	-0.1018	7.40	0.0236	0.759	3.2 (327)	0.2696	6.210e-4
excludes nearest neighbors	8	6.0/1	-0.0124	-0.0483	7.48	0.0264	0.849	5.25 (327)	0.3501	4.528e-5
	9	4.0/0	-0.0152	-0.6694	7.45	0.0229	0.736	5.3 (327)	0.3532	2.157e-5
		Baseline	f	Σα	a	b	b/b ₀	β(T ₀)	SLS	P _h
	Index	Used			kJ/(mol.K)	kJ/(mol.K ²)				

Supplementary Table 1: Parameters for the various models employed derived from the fitting to experimental heat capacity profile of PDD.

				kJ/mol				kJ/mol		
	10	FB - σ	0.84	120.5	5.89	0.0251	0.81	-0.11 (321.4)	0.8349	3.19e-13
Variable Barrier Model	11	FB	1.0	102.7	6.14	0.0311	1.00	0.13 (322.9)	0.2900	6.142e-4
$FB \rightarrow Freire$	12	$FB + \sigma$	1.0	138.1	6.39	0.0371	1.183	1.10 (322.0)	0.7934	1.63e-12
Baseline	13	Floating Baseline	1.0	139.2	6.65	0.0307	0.987	1.13 (322.7)	0.1238	0.3592
	14	Baseline 2	0.72	143.1	7.10	0.0247	0.794	1.79 (323.6)	0.1900	0.0162
	15	Baseline 1	1.0	142.5	6.87	0.0304	0.978	1.96 (322.6)	0.1524	0.1195
	16	Baseline 3	0.43	148.2	7.30	0.0194	0.824	2.16 (325.2)	0.2531	1.701e-3
	17	Baseline 8	0.48	144.5	7.45	0.0229	0.736	4.32 (327.0)	0.2888	2.628e-4
	18	Baseline 4	0.1 (fixed)	167.1	7.45	0.0147	0.473	4.47 (331.1)	0.3748	5.946e-7
	Index	a _{ASA}	ΔS_{res}^{385}	$\Delta H_{ m res}^{ m T_{ m ref}}$	a	b	b/b ₀	β (T ₀)	SLS	P _h
		J/(mol.K.Å ²)	kJ/(mol.K)	kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
Muñoz Eaton	19	0	-0.0186	-6.16 (385 K)	6.64	0.0297	0.955	0	0.6244	1.612e-9
Sequence	20	0.05	-0.0181	-5.69 (322 K)	7.03	0.0273	0.878	0.35 (322.2)	0.2693	1.100e-3

Approximation PDD ID: 2PDD	21	0.11	-0.0177	-5.18 (322 K)	7.05	0.0238	0.765	1.70 (320.2)	0.1592	0.0445
	22	0.19	-0.0177	-4.72 (322 K)	8.02	0.0198	0.637	3.32 (318.2)	0.2277	1.200e-3
	23	0.29	-0.0182	-4.28 (322 K)	8.60	0.0146	0.473	6.00 (316.2)	0.4006	2.211e-7

* The gray shaded boxes are the free parameters for the corresponding model.

* The yellow shaded boxes are the best fit parameters from each model.

* $b_0 = 0.0311 \text{ kJ/} \text{(mol } \text{K}^2\text{)}$ is the Freire Baseline (FB) slope for PDD

Index	Protein	dC _p /dT	MW	Source	Index	Protein	dC _p /dT	MW	Source
		$kJ/(K^2 g)$					kJ/(K ² g)		
1	BPTI	5.65E-03	6525	S1	17	RNase H (T. ter)	8.67E-03	18621	S4
2	Barnase	6.09E-03	12328	S1	18	RNase H (E. coli)	10.84E-03	17552	S4
3	Myoglobin	6.96E-03	17801	S1	19	Thioredoxin (E. coli)	8.08E-03	11760	S5
4	Lysozyme	7.13E-05	14307	S1	20	Thioredoxin h	7.95E-03	12600	S6
5	Cytochrome C	7.83E-03	12600	S1	21	α-lactalbumin	7.74E-03	14200	S7
6	Ubiquitin	7.83E-03	8539	S1	22	Engrailed	11.30E-03	7583	S 1
7	T ₄ lysozyme	7.83E-03	18860	S1	23	Mat a2	12.44E-03	9755	S 1
8	RNase T1	8.00E-03	11068	S1	24	Antennapedia	12.87E-03	8595	S 1
9	RNase A	9.57E-03	13725	S1	25	LZ-GCN4	15.22E-03	8070	S 1
10	Staph. Nuclease	6.82E-03	16000	S2	26	HMGD-74	13.39E-03	8354	S 1
11	Interleukin 1β	4.75E-03	17391	S2	27	HMG SOX5	12.53E-03	9085	S 1
12	Ovalbumin	7.74E-03	44000	S2	28	NHP6A	18.00E-03	10708	S 1
13	Chymiotrypsinogen	7.32E-03	8539	S2	29	SRY	23.04E-03	10234	S 1
14	ROP	7.78E-03	6510	S3	30	Lef-79	23.74E-03	9310	S 1

Supplementary Table 2: Low-temperature heat capacity baseline slopes*

15	Tendamistat	4.48E-03	7960	S3	31	Zn-finger TFIIIA	15.04E-03	12040	S 1
16	SH ₃ domain	6.57E-03	6700	S3					

* The proteins in red are DNA binding domains

Supplementary References

- S1) Privalov PL, Dragan AI (2007), Biophysical Chemistry 126:16-24.
- S2) Gomez J, Hilser VJ, Xie D, Freire E (1995), Proteins 22:404-412.
- S3) Makhatadze GI (1998), Biophysical Chemistry 71:133-156.

S4) Robic S, Guzman-Casado M, Sanchez-Ruiz JM, Marqusee S. (2003), Proceedings of the National Academy of Sciences USA 100:11345-11349.

- S5) Georgescu RE, Garcia-Mira MM, Tasayco ML, Sanchez-Ruiz JM (2001), European Journal of Biochemistry 268:1477-1485.
- S6) Richardson JM, Lemaire SD, Jacquot JP, Makhatadze GI (2000), Biochemistry 39:11154-11162.
- S7) Hendrix T, Griko YV, Privalov PL (2000), Biophysical Chemistry 84:27-34.

Supplementary TgpW.	l'able 3:	Parameters for	the various mo	dels emplo	yed derived f	rom the fitting	to experi	imental heat cap	acity profi	le of
		ΛC	k att	ΛH^{385}	а	b	b/b ₀	β (T ₀)	SLS	Ph

		$\Delta C_{p,res}$	κ _{ΔH}	ΔH_{res}^{505}	a	U	n/n0	р(I ₀)	5L3	ľh
Mean-Field	Index	J/(mol.K)		kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
Model	1	0	1.94	6.45	8.62	0.0692	1.512	2.0 (345)	2.5905	3.795e-4
$\Delta S_{res}^{conf} = 0.0165$	2	10	2.01	6 4 4	9.04	0.0613	1 337	2 8 (345)	2 9859	1 400e-3
kJ/(mol.K)	2	10	2.01	0.11	9.01	0.0015	1.557	2.0 (3.13)	2.9039	1.1000 5
L = 4.2	3	20	2.08	6.44	9.42	0.0536	1.171	3.9 (345)	3.8298	1.100e-3
$\kappa_{\Delta Cp} = 4.5$	4	30	2.17	6.44	9.75	0.0465	1.016	5.0 (345)	5.1483	1.965e-4
	5	40	2.28	6.43	10.0	0.0399	0.871	7.0 (343)	7.0043	7.944e-6
Muñoz Eaton		Cut-	ΔS_{res}^{conf}	ΔH_{cont}	a	b	b/b ₀	β(T ₀)	SLS	P _h
Model - Exact Solution	Index	off(Å)/NN	kJ/(mol.K)	kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
	6	3.6/1	-0.0216	-0.4512	10.4	0.0295	0.644	7.0 (344)	5.0113	4.571e-5
$NN = 1 \rightarrow includes$	7	4.0/1	-0.0167	-0.2358	0.85	0.0505	1 103	6.1 (3/4)	3 6603	$1.000e^{-3}$
nearest neighbors	,	7.0/ 1	-0.0107	-0.2330	7.05	0.0505	1.105	0.1 (344)	5.0005	1.9000-5
$NN = 0 \rightarrow$	8	4.5/1	-0.0152	-0.1354	9.82	0.0542	1.183	6.6 (344)	4.2762	5.140e-4
excludes nearest neighbors	9	5.0/1	-0.0129	-0.0799	9.67	0.0611	1.334	7.0 (344)	5.8664	1.408e-5
		Baseline	f	Σα	a	b	b/b ₀	β(T ₀)	SLS	P _h

	Index	Used		kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
	10	FB - σ	0.54	129.5	8.67	0.0369	0.806	-0.04 (338.8)	2.5058	8.400e-3
	11	FB	0.56	192.1	9.04	0.0458	1.000	0.50 (341.3)	0.4271	0.3969
Variable Barrier Model	12	$FB + \sigma$	0.56	221.7	9.41	0.0547	1.194	2.73 (343.4)	2.2314	0.0131
$FB \rightarrow Freire$ Baseline	13	Floating Baseline	0.62	194.1	8.89	0.0490	1.068	0.54 (341.4)	0.3954	0.3931
	14	Baseline 1	0.96	216.6	8.62	0.0692	1.511	2.92 (341.9)	3.8473	5.007e-5
	15	Baseline 2	0.74	218.3	9.04	0.0613	1.338	2.60 (342.7)	2.8388	1.800e-3
	16	Baseline 3	0.54	222.0	9.42	0.0536	1.170	2.53 (343.3)	1.9321	0.0239
	17	Baseline 4	0.33	230.3	9.75	0.0465	1.015	2.90 (344.4)	1.2663	0.1023
	Index	a _{ASA}	ΔS_{res}^{385}	$\Delta H_{ m res}^{ m T_{ m ref}}$	a	b	b/b ₀	β (T ₀)	SLS	P _h
		J/(mol.K.Å ²)	kJ/(mol.K)	kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
Muñoz Foton	18	0	-0.0193	-6.72	8.29	0.0654	1.428	0.00	3.069	4.936e-4
Model - Single Sequence	19	0.105 (floating)	-0.0180	-5.81 (340 K)	9.40	0.0600	1.310	1.92 (339)	1.1972	0.0320
Approximation	20	0.2	-0.0173	-5.18 (340 K)	10.4	0.0542	1.183	3.87 (337)	2.001	0.0201

PDD ID: 1HYW	21	0.3	-0.0170	-4.68	11.3	0.0476	1.039	6.09 (335)	3.640	2.200e-3
				(340 K)						

* $b_0 = 0.0458 \text{ kJ/} (\text{mol } \text{K}^2)$ is the FB slope for gpW

Supplementary Table 4: Parameters for the various models employed derived from the fitting to experimental heat capacity profile of SH3.

		$\Delta C_{p,res}$	$k_{\Delta \mathrm{H}}$	ΔH_{res}^{385}	a	b	b/b ₀	β(T ₀)	SLS	P _h
	Index	J/(mol.K)		kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
	1	0	2.03	6.41	8.51	0.0607	1.2541	3.0 (344.1)	12.324	5.84e-34
Moon-Field	2	10	2.10	6.41	8.82	0.0545	1.1260	4.3 (344.1)	7.2408	1.17e-19
Model	3	20	2.19	6.41	9.10	0.0486	1.0041	5.9 (344)	3.6700	1.018e-9
$\Delta S^{conf} = 0.0165$	4	30	2.31	6.40	9.34	0.0430	0.8884	8.2 (345)	1.4466	1.200e-3
$\Delta S_{res} = 0.0103$ kJ/(mol.K)	5	35	2.38	6.40	9.44	0.0404	0.8347	9.9 (345)	0.8245	0.0499
$k_{\Delta Cp} = 4.3$	6	40	2.49	6.40	9.55	0.0377	0.7789	12.2 (344)	0.5328	0.2390
	7	41.9 (floating)	2.54	6.39	9.59	0.0366	0.7562	13.7 (344)	0.5080	0.2431
	8	45	2.63	6.39	9.67	0.0348	0.7190	16.3 (344)	0.5646	0.1310
	9	50	2.88	6.37	9.83	0.0312	0.6446	22.1 (344)	0.8755	9.700e-3
Muñoz Eaton Model - Exact Solution	Index	Cut- off(Å)/NN	ΔS_{res}^{conf} kJ/(mol.K)	ΔH _{cont} kJ/mol	a kJ/(mol.K)	b kJ/(mol.K ²)	b/b ₀	β (T ₀) kJ/mol	SLS	P _h

PDB id: 1SHG	10	3.5/1	-0.0202	-0.6412	9.30	0.0405	0.8368	3.0 (342)	6.1550	1.0e-16
$NN = 1 \rightarrow includes$	11	4.0/1	-0.0144	-0.2348	9.15	0.0559	1.1550	6.7 (342)	3.8905	1.82e-10
$NN = 0 \rightarrow$	12	4.5/1	-0.0123	-0.1238	9.14	0.0607	1.2541	9.6 (342)	3.4645	1.592e-9
excludes nearest neighbors	13	5.0/1	-0.0115	-0.0721	9.14	0.0621	1.2831	11.0 (342)	3.5359	8.23e-10
		Baseline	f	Σα	a	b	b/b ₀	β (T ₀)	SLS	P _h
	Index	Used		kJ/mol	kJ/(mol.K)	kJ/(mol.K ²)		kJ/mol		
	14	FB - σ	0.44	250.5	9.16	0.0390	0.8058	3.1 (343.3)	6.4882	1.04e-17
	15	FB	0.06	244.5	9.55	0.0484	1.0000	14.9 (354.8)	1.5435	7.459e-4
	16	Baseline 1	0.80	235.1	8.51	0.0607	1.2541	5.0 (342.1)	5.1584	3.39e-14
Variable Barrier Model	17	Baseline 2	0.64	238.3	8.82	0.0545	1.1260	4.9 (343.1)	4.0387	7.93e-11
$FB \rightarrow Freire$	18	Baseline 3	0.48	242.7	9.10	0.0486	1.0041	5.1 (344.1)	3.4962	3.069e-9
Baseline	19	Baseline 4	0.33	249.3	9.34	0.0430	0.8884	5.5 (345.5)	3.5036	2.482e-9
	20	Baseline 6 (large errors)	0.16	260.9	9.55	0.0377	0.7789	7.0 (348.1)	3.9374	9.73e-11
	21	Grid analysis on β fixing FB slope	0.06	239.6	9.69	0.0484	1.0000	16.3 (355.3)	1.5082	9.334e-4

	22	Two-state Fit Baseline (large errors)	0.06	250.7	9.80	0.0427	0.8822	13.5 (354.4)	2.2966	5.195e-6
Muñoz Eaton Model - Single Sequence Approximation	Index	a _{ASA} J/(mol.K.Å ²)	ΔS_{res}^{385} kJ/(mol.K)	$\Delta H_{ m res}^{ m T_{ m ref}}$ kJ/mol	a kJ/(mol.K)	b kJ/(mol.K ²)	b/b ₀	β (T ₀) kJ/mol	SLS	P _h
PDD ID: 1SHG	23	0.39	-0.0172	-4.23 (340 K)	12.0	0.0364	0.7521	12.3 (335.6)	0.4583	0.3245

* $b_0 = 0.0484 \text{ kJ/} \text{ (mol } \text{K}^2\text{)}$ is the FB slope for SH3

Supplementary Figure 1. Bayesian determination of the thermodynamic folding barrier for PDD using multiple models. The plots shown are analogous to panel (d) in figures 4 and 5 of the main text, except that calculations have been carried out with relative Shannon entropy values equal to 0.3 and 0.7. Color refers to the protein: PDD (red), gpW (blue), SH3 (green).

Supplementary Figure 2. Agreement between absolute estimate of barriers (β) and that calculated considering the differences in curvature from the integration of probability density (β_{int}) (MF: blue, ME-ES: green, VB: red, ME-SSA: cyan). The dashed line corresponds to the 1:1 correlation line and *r* is the linear correlation coefficient.

To account for the differences in the curvature of the folded, unfolded and barrier top extrema, the corresponding reaction coordinate values (F_{min} , U_{min} and B_{max} , respectively) were first identified from the one-dimensional free-energy profiles. The upper (u) and lower (l) limits for the transition-state ensemble along the reaction co-ordinate x were calculated from:

$$x_{u} = B_{\max} + \left(\left(F_{\min} - B_{\max} \right) / z \right)$$
$$x_{l} = B_{\max} - \left(\left(B_{\max} - U_{\min} \right) / z \right)$$

where z is a parameter that determines the resultant width on either side of the barrier. The area within the limits is integrated in the probability density plots and referenced to that corresponding to the folded and unfolded states to calculate β_{int} . The value of z was set to 2 for the MF, ME-ES and VB models that display similar overall features. However, z was defined as 3.5 for the ME-SSA calculation as the unfolded state is not captured well in the one-dimensional representation.